精英家教网 > 高中数学 > 题目详情

函数y=cos2x-8cosx的值域是 ________.

[-7,9]
分析:根据二倍角的余弦函数公式化简函数解析式,得到关于cosx的二次函数,根据二次函数开口向上且在对称轴的左边函数为减函数,利用cosx的值域即可求出y的最大值和最小值得到函数的值域.
解答:y=cos2x-8cosx=2cos2x-8cosx-1=2(cosx-2)2-9,由于cosx∈[-1,1],
而当cosx<2时,y为减函数,所以当cosx=1时,y的最小值为2×(1-2)2-9=-7;当cosx=-1时,y的最大值为2×(-1-2)2-9=9.
所以函数y的值域是[-7,9].
故答案为:[-7,9]
点评:此题考查学生灵活运用二倍角的余弦函数公式化简求值,会利用二次函数的图象及增减性求出函数的值域.做题时注意余弦函数的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了得到函数y=sin(2x-
π
6
)的图象,可以将函数y=cos2x的图象(  )
A、向右平移
π
6
个单位长度
B、向右平移
π
3
个单位长度
C、向左平移
π
6
个单位长度
D、向左平移
π
3
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=cos2x的图象按向量
a
=(-
π
10
 , 
1
2
)
平移后,得到的图象对应的函数解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=cos2x的图象,可以将函数y=sin(2x-
π
6
)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是
(1)(3)(4)
(1)(3)(4)

(1)△ABC中,sinA=sinB是△ABC为等腰三角形的充分不必要条件.
(2)y=2
1-x
+
2x+1
的最大值为
5

(3)函数f(x+1)是偶函数,则f(x)的图象关于直线x=1对称.
(4)已知f(x)在R上减,其图象过A(0,1),B(3,-1),则|f(x+1)|<1的解集是(-1,2).
(5)将函数y=cos2x的图象向左平移
π
4
个单位,得到y=cos(2x-
π
4
)
的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)函数y=cos2x+sin2x,x∈R的值域是(  )

查看答案和解析>>

同步练习册答案