精英家教网 > 高中数学 > 题目详情
. 随机变量取值的概率均为0.2,随机变量取值的概率也为0.2.
若记分别为的方差,则(   )
A.
B.
C.
D.的大小关系与的取值有关
A
=t++++)=t
++++]

,…,,同理得

只要比较有大小,



,所以,选A.
[评注] 本题的数据范围够阴的,似乎为了与选项D匹配,若为此范围面困惑,那就中了阴招!稍加计算,考生会发现相等,其中的智者,更会发现第二组数据是第一组数据的两两平均值,故比第一组更“集中”、更“稳定”,根据方差的涵义,立得而迅即攻下此题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)在1,2,3…,9,这9个自然数中,任取3个数.
(Ⅰ)求这3个数中,恰有一个是偶数的概率;
(Ⅱ)记X为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时X的值是2)。求随机变量X的分布列及其数学期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学自主招生面试时将20名学生平均分成甲,乙两组,其中甲组有4名女学生,乙组有6名女学生.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名学生进行第一轮面试.
(Ⅰ)求从甲、乙两组各抽取的人数;
(Ⅱ)求从甲组抽取的学生中恰有1名女学生的概率;
(Ⅲ)求抽取的4名学生中恰有2名男学生的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
某医院有7名医生(4男3女), 从7名医生中选3人组成医疗小组下乡巡诊.
(1)设所选3人中女医生的人数为,求的分布列及数学期望;
(2)现已知4名男医生中张强已被选中,求3名女医生中李莉也被选中的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一个小球从M处投入,通过管道自上而下落ABC。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,

2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为(),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ
0
1
2
3



b

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望ξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为L2路线上有B1B2两个路口,各路口遇到红灯的概率依次为
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你
帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)张师傅驾车从公司开往火车站,途径4个交通岗,这4个交通岗将公司到火车站分成5个时段,每个时段的驾车时间都是3分钟,如果遇到红灯要停留1分钟。假设他在各交通岗遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行程时间不小于16分钟的概率;
(2)记张师傅此行程所需时间为Y分钟,求Y的分布列和均值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( 12分)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;
(2)签约人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案