【题目】对于数列
,定义
,
.
(1) 若
,是否存在
,使得
?请说明理由;
(2) 若
,
,求数列
的通项公式;
(3) 令
,求证:“
为等差数列”的充要条件是“
的前4项为等差数列,且
为等差数列”.
【答案】(1)不存在(2)
(3)见解析
【解析】试题分析:(1)由题意知数列
为递增数列,计算出数列的和
与
可得结果;(2)根据
,可得
,故可得
,即数列
,
均为公比为6的等比数列,可得其通项公式;(3)将题意转化为
,先证必要性:设
,其中
为常数,可得
,得结果,再证充分性:利用数学归纳法证得结果.
试题解析:(1)由
,可知数列
为递增数列, 计算得
,
,所以不存在
,使得
;
(2)由
,可以得到当
时,
,
又因为
,所以
, 进而得到
, 两式相除得
,所以数列
,
均为公比为6的等比数列,
由
,得
,所以
;
(3)证明:由题意
,
当
时,
,
因此,对任意
,都有
.
必要性(
):若
为等差数列,不妨设
,其中
为常数,
显然
,
由于
=
,
所以对于
,
为常数,
故
为等差数列;
充分性(
):由于
的前4项为等差数列,不妨设公差为
当
时,有
成立
假设
时
为等差数列,
即
当
时,由
为等差数列,得
,
即:
,
所以
![]()
,
因此
,
综上所述:数列
为等差数列.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点,
为线段
上的动点.
![]()
(1)平面
与平面
是否互相垂直?如果垂直,请证明;如果不垂直,请说明理由.
(2)若
,
为线段
的三等分点,求多面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):
![]()
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳
个/分钟,踢毽
个/分钟.当
,且
时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的定义域D,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求a的值;
(3)对任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左顶点为
,右焦点为
,斜率为1的直线与椭圆
交于
,
两点,且
,其中
为坐标原点.
(1)求椭圆
的标准方程;
(2)设过点
且与直线
平行的直线与椭圆
交于
,
两点,若点
满足
,且
与椭圆
的另一个交点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,
平面PCD,
,
,
,E为AD的中点,AC与BE相交于点O.
![]()
(1)证明:
平面ABCD.
(2)求直线BC与平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据
![]()
(1)试计算2012年的快递业务量;
(2)分别将2013年,2014年,…,2017年记成年的序号t:1,2,3,4,5;现已知y与t具有线性相关关系,试建立y关于t的回归直线方程
;
(3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量
附:回归直线的斜率和截距地最小二乘法估计公式分别为:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
![]()
(1)若椭圆C经过两点
、
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
·
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com