精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则 的最小值为

【答案】﹣
【解析】解:∵函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数,

,x>0,

当a≤e时,f′(x)>0,

f(x)在(0,+∞)上是增函数,∴f(x)≤0不可能恒成立,

当a>e时,由 ,得x=

∵不等式f(x)≤0恒成立,∴f(x)的最大值为0,

当x∈(0, )时,f′(x)>0,f(x)单调递增,

当x∈( ,+∞)时,f′(x)<0,f(x)单调递减,

∴当x= 时,f(x)取最大值,

f( )=﹣ln(a﹣e)﹣b﹣1≤0,

∴ln(a﹣e)+b+1≥0,

∴b≥﹣1﹣ln(a﹣e),

(a>e),

令F(x)= ,x>e,

F′(x)= =

令H(x)=(x﹣e)ln(x﹣e)﹣e,

H′(x)=ln(x﹣e)+1,

由H′(x)=0,得x=e+

当x∈(e+ ,+∞)时,H′(x)>0,H(x)是增函数,

x∈(e,e+ )时,H′(x)<0,H(x)是减函数,

∴当x=e+ 时,H(x)取最小值H(e+ )=﹣e﹣

∵x→e时,H(x)→0,x>2e时,H(x)>0,H(2e)=0,

∴当x∈(e,2e)时,F′(x)<0,F(x)是减函数,

当x∈(2e,+∞)时,F′(x)>0,F(x)是增函九,

∴x=2e时,F(x)取最小值,F(2e)= =﹣

的最小值为﹣

所以答案是:﹣

【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点A(﹣2,0)的直线与x=2相交于点C,过点B(2,0)的直线与x=﹣2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x+2y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点EF,且EF,则下列结论中正确的序号是_____

①AC⊥BE ②EF∥平面ABCD ③△AEF的面积与△BEF的面积相等.④三棱锥A﹣BEF的体积为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l于点M,线段MF与抛物线C交于点N,若PF的斜率为 ,则 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足12Sn﹣36=3n2+8n,数列{log3bn}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)令cn=(﹣1)n ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)对定义域内的任意x1 , x2 , 当f(x1)=f(x2)时,总有x1=x2 , 则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数.若函数 为单纯函数,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.

查看答案和解析>>

同步练习册答案