分析 (Ⅰ)通过在an+1-an+2anan+1=0两边同除以anan+1、整理得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,进而可得结论;
(Ⅱ)通过(Ⅰ)知bn=2n+1,裂项可知anan+1=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),并项相加即得结论.
解答 证明:(Ⅰ)由a1=$\frac{1}{3}$,an+1-an+2anan+1=0,可知an≠0,
故在an+1-an+2anan+1=0两边同除以anan+1,
整理得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,即bn+1-bn=2,
故数列{bn}是以2为公差的等差数列;
(Ⅱ)由(Ⅰ)知bn=2n+1,所以an=$\frac{1}{2n+1}$,
则anan+1=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴Sn=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)
<$\frac{1}{6}$.
点评 本题考查数列的通项及前n项和,裂项、并项求和是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的图象关于直线x=$\frac{5π}{12}$对称 | B. | f(x)的图象关于y轴对称 | ||
| C. | f(x)的最小正周期为2π | D. | f(x)在区间(0,$\frac{π}{3}$)单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com