精英家教网 > 高中数学 > 题目详情
12.已知抛物线C:y2=2px(p>0)的焦点为F,点P在C上且其横坐标为1,以F为圆心,|FP|为半径的圆与C的准线l相切.
(1)求p的值;
(2)设l与x轴交点E,过点E作一条直线与抛物线C交于A、B两点,求线段AB的垂直平分线在x轴上的截距的取值范围.

分析 (1)由直线和圆相切的条件:d=r,结合条件,即可求得p=2;
(2)求出抛物线的方程,设出A,B的坐标,以及垂直平分线与x轴的交点的横坐标,由垂直平分线的性质,解得横坐标,再由直线和抛物线方程联立,运用韦达定理和判别式大于0,即可得到所求范围.

解答 解:(1)因为以F为圆心、|FP|为半径的圆与C的准线l相切,
所以圆的半径为p,即|FP|=p,
所以FP⊥x轴,又点P的横坐标为l,
所以焦点F的坐标为(1,0),从而p=2;
(2)由(1)知抛物线C的方程为y2=4x,
设A(x1,y1),B(x2,y2),线段AB的垂直平分线与x轴的交点D(x0,0),
则由|DA|=|DB|,y12=4x1,y22=4x2
得(x1-x02+y12=(x2-x02+y22
化简得x0=$\frac{{x}_{1}+{x}_{2}}{2}$+2①
设直线AB的方程为x=my-1,代入抛物线C的方程,
得y2-4my+4=0,由△>0得m2>1,
由根与系数关系得y1+y2=4m,
所以x1+x2=m(y1+y2)-2=4m2-2,
代入①得x0=2m2+1>3,
故线段AB的垂直平分线在x轴上的截距的取值范围是(3,+∞).

点评 本题考查抛物线的方程和性质,考查直线和抛物线的位置关系,注意正确设出直线方程,联立抛物线的方程,运用韦达定理和中点坐标公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知在数列{an}中,a1=1,an=$\frac{{a}_{n-1}}{2{a}_{n-1}+1}$,则a12等于(  )
A.$\frac{1}{21}$B.$\frac{1}{23}$C.$\frac{1}{25}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将圆x2+y2=1变换为椭圆$\frac{{{{x'}^2}}}{4}+\frac{{{{y'}^2}}}{9}=1$的伸缩变换公式为(  )
A.$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$B.$\left\{\begin{array}{l}x'=3x\\ y'=2y\end{array}\right.$C.$\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=\frac{1}{3}y\end{array}\right.$D.$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=\frac{1}{2}y\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-1|+|x-a|.
(1)若a=-1,解不等式f(x)≥3
(2)如果?x∈R,f(x)≥2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的A的值为(  )
A.7B.15C.29D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=$\frac{1}{3}$,an+1-an+2anan+1=0.
(1)记bn=$\frac{1}{{a}_{n}}$,证明:数列{bn}是等差数列;
(2)记数列{anan+1}的前n项和为Sn,求证:Sn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于(  )
A.12+$\frac{47π}{2}$B.12+23πC.12+24πD.12+$\frac{45}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α,β是两个不同的平面,有下列三个条件:
①存在一个平面γ,γ⊥α,γ∥β;
②存在一条直线a,a?α,a⊥β;
③存在两条垂直的直线a,b,a⊥β,b⊥α.
其中,所有能称为“α⊥β”的充要条件的序号是(  )
A.B.C.D.①③

查看答案和解析>>

同步练习册答案