分析 (Ⅰ)由等可能事件概率计算公式能求出第1次检测的纸币是假纸币的概率.
(Ⅱ)由相互独立事件概率乘法公式能求出第3次检测的纸币是假纸币的概率.
(Ⅲ)由题意X的可能取值为2,4,6,8,分别求出相应的概率,由此能求出X的分布列和数学期望.
解答 解:(Ⅰ)由题意第1次检测的纸币是假纸币的概率:p1=$\frac{1}{5}$.
(Ⅱ)第3次检测的纸币是假纸币的概率:p2=$\frac{4}{5}×\frac{3}{4}×\frac{1}{3}$=$\frac{1}{5}$.
(Ⅲ)由题意X的可能取值为2,4,6,8,
P(X=2)=$\frac{1}{5}$,
P(X=4)=$\frac{4}{5}×\frac{1}{4}$=$\frac{1}{5}$,
P(X=6)=$\frac{4}{5}×\frac{3}{4}×\frac{1}{3}$=$\frac{1}{5}$,
P(X=8)=$\frac{4}{5}×\frac{3}{4}×\frac{2}{3}×\frac{1}{2}$+$\frac{4}{5}×\frac{3}{4}×\frac{2}{3}×\frac{1}{2}$=$\frac{2}{5}$,
∴X的分布列为:
| X | 2 | 4 | 6 | 8 |
| P | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{2}{5}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 10或-$\frac{7}{2}$ | B. | 4或-$\frac{5}{4}$ | C. | 4或-$\frac{7}{2}$ | D. | 10或-$\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x∈R|x≤1} | B. | {x∈R|x<1} | C. | {x∈R|0<x≤1} | D. | {x∈R|0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com