精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函数g(x)=a-|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4,则ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范围是[4,+∞).

分析 画出函数y=|f(x)|的图象,由题意得出a的取值范围和x1x2,x3+x4的值,再利用基本不等式即可求出ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范围.

解答 解:由题意,画出函数y=|f(x)|的图象,如图所示,
又函数g(x)=a-|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4
所以0<a≤2,
且log2(-x1)=-log2(-x2)=2-x3=x4-2,
所以x1x2=1,x3+x4=4,
所以ax1x2=a,
$\frac{{x}_{3}{+x}_{4}}{a}$=$\frac{4}{a}$,
所以ax1x2+$\frac{{{x_3}+{x_4}}}{a}$=a+$\frac{4}{a}$≥2$\sqrt{a•\frac{4}{a}}$=4,当且仅当a=2时“=”成立;
所以ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范围是[4,+∞).
故答案为:[4,+∞).

点评 本题考查了分段函数研究函数的零点的应用问题,也考查了取值范围的确定与等价转化的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知有1张假纸币和4张不同面值的真纸币,现需要通过权威检测工具找出假纸币,将假纸币上交银行,每次随机检测一张纸币,检测后不放回,直到检测出假纸币或者检测出4张真纸币时,检测结束.
(Ⅰ)求第1次检测的纸币是假纸币的概率;
(Ⅱ)求第3次检测的纸币是假纸币的概率;
(Ⅲ)若每检测一张纸币需要2分钟,设X表示检测结束所需要的时间,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.
(Ⅰ)证明:BE=DE;
(Ⅱ)若AD=3AC,求AE:AC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+mx2+nx+p在x=-$\frac{2}{3}$和x=1处都取得极值.
(1)求函数f(x)的单调区间;
(2)若对任意的x∈[-2,2],有f(x)≥-p2-ap-6恒成立,其中a∈[-1,1].求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=x2lnx,且f(1)=-1,则f(x)的最小值为(  )
A.-eB.-$\frac{e}{2}$C.$\frac{e}{2}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,A、B、C、D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若EF2=FA•FB,证明:EF∥CD;
(2)若BD平分∠ABC,AE=2AB,求证:EC=2AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC内接于⊙O,BE是⊙O的直径,AD是BC边上的高.求证:BA•AC=BE•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥P-ABC中,已知PA⊥平面ABC,平面PAB⊥平面PBC
(1)求证:BC⊥平面PAB;
(2)若PA=AB,求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x∈R,下列不等式中正确的是(  )
A.2x<3xB.$\frac{1}{{{x^2}-x+1}}$>$\frac{1}{{{x^2}+x+1}}$
C.$\frac{1}{{{x^2}+1}}$>$\frac{1}{{{x^2}+2}}$D.2|x|<x2+1

查看答案和解析>>

同步练习册答案