分析 (1)推导出BC⊥PA,AB⊥PA,AB⊥BC,由此能证明BC⊥平面PAB.
(2)由AB⊥BC,PB⊥BC,得∠PBA是二面角P-BC-A的大小,由此能求出二面角P-BC-A的大小.
解答 证明:(1)∵PA⊥平面ABC,AB、BC?平面ABC,
∴BC⊥PA,AB⊥PA,![]()
∵平面PAB⊥平面PBC,面PBC∩面PAB交于线段AB,
∴AB⊥BC,
又PA∩AB=A,∴BC⊥平面PAB.
解:(2)∵BC⊥面PAB,∴AB⊥BC,PB⊥BC,
∴∠PBA是二面角P-BC-A的大小,
∵PA=AB,PA⊥AB,
∴∠PBA=45°,
∴二面角P-BC-A的大小为45°.
点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({1,\frac{π}{6}})$ | B. | $({1,\frac{5π}{6}})$ | C. | $({1,\frac{7π}{6}})$ | D. | $({1,\frac{11π}{6}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com