| A. | $({1,\frac{π}{6}})$ | B. | $({1,\frac{5π}{6}})$ | C. | $({1,\frac{7π}{6}})$ | D. | $({1,\frac{11π}{6}})$ |
分析 圆ρ=$\sqrt{3}$cosθ-sinθ(0≤θ<2π)即ρ2=$\sqrt{3}$ρcosθ-ρsinθ,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2,代入配方化简即可得出直角坐标.利用$ρ=\sqrt{{x}^{2}+{y}^{2}}$,tanθ=$\frac{y}{x}$,由0≤θ<2π且点C在第四象限即可得出.
解答 解:圆ρ=$\sqrt{3}$cosθ-sinθ(0≤θ<2π)即ρ2=$\sqrt{3}$ρcosθ-ρsinθ,
可得直角坐标方程:x2+y2=$\sqrt{3}$x-y,配方为:$(x-\frac{\sqrt{3}}{2})^{2}+(y+\frac{1}{2})^{2}$=1,
∴圆心C直角坐标为$(\frac{\sqrt{3}}{2},-\frac{1}{2})$,
化为:$ρ=\sqrt{(\frac{\sqrt{3}}{2})^{2}+(-\frac{1}{2})^{2}}$=1,tanθ=$-\frac{\sqrt{3}}{3}$,
由0≤θ<2π且点C在第四象限,
∴θ=$\frac{11π}{6}$.
∴圆心的极坐标是$(1,\frac{11π}{6})$.
故选:D.
点评 本题考查了极坐标与直角坐标方程的互化、圆的方程,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}+\frac{y^2}{16}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{25}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | $1+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x<3x | B. | $\frac{1}{{{x^2}-x+1}}$>$\frac{1}{{{x^2}+x+1}}$ | ||
| C. | $\frac{1}{{{x^2}+1}}$>$\frac{1}{{{x^2}+2}}$ | D. | 2|x|<x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 4 | D. | -4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com