精英家教网 > 高中数学 > 题目详情
14.设z=kx+y,其中实数x,y满足$\left\{{\begin{array}{l}{x+y≥2}\\{y≤\frac{1}{2}x+2}\\{y≥2x-4}\end{array}}\right.$,若z的最大值为12,则实数k的值是(  )
A.2B.-2C.4D.-4

分析 画出满足约束条件$\left\{{\begin{array}{l}{x+y≥2}\\{y≤\frac{1}{2}x+2}\\{y≥2x-4}\end{array}}\right.$,的平面区域,然后分析平面区域里各个角点,进一步利用目标函数z=kx+y的最大值为12,判断目标函数经过的点,即可求出k的值.

解答 解:由变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥2}\\{y≤\frac{1}{2}x+2}\\{y≥2x-4}\end{array}}\right.$,作出可行域:
∵z=kx+y的最大值为12,即y=-kx+z在y轴上的截距是12,
∴目标函数z=kx+y经过$\left\{\begin{array}{l}{y=\frac{1}{2}x+2}\\{y=2x-4}\end{array}\right.$的交点A(4,4),
∴12=4k+4;解得k=2.
故选:A.

点评 本题考查简单的线性规划的应用,在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在极坐标系中,圆ρ=$\sqrt{3}$cosθ-sinθ(0≤θ<2π)的圆心的极坐标是(  )
A.$({1,\frac{π}{6}})$B.$({1,\frac{5π}{6}})$C.$({1,\frac{7π}{6}})$D.$({1,\frac{11π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若曲线f(x)=f′(2)lnx-f(1)x+2x2在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线为l,则切线l的斜率为29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xln(x+1)+1.
(1)求y=f(x)在点(0,f(0))处的切线;
(2)已知函数g(x)=f(x)-$\frac{{x}^{3}}{3}$+$\frac{{x}^{2}}{2}$-1,判断函数y=g(x)在区间(-1,1)内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆,已知曲线C1上的点M(1,$\frac{\sqrt{3}}{2}$)对应的参数φ=$\frac{π}{3}$,射线θ=$\frac{π}{3}$与曲线C2交于点D(1,$\frac{π}{3}$).
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)若点A,B的极坐标分别为(ρ1,θ),(ρ2,θ+$\frac{π}{2}$),且两点均在曲线C1上,求$\frac{1}{{ρ}_{1}^{2}}$+$\frac{1}{{ρ}_{2}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角C所对的边长为c,△ABC的面积为S,且tan$\frac{A}{2}$tan$\frac{B}{2}$+$\sqrt{3}$(tan$\frac{A}{2}$+tan$\frac{B}{2}}$)=1.
(I) 求△ABC的内角C的值;
(II)求证:c2≥4$\sqrt{3}$S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z=cos$\frac{π}{12}$+isin$\frac{π}{12}$(i是虚数单位),复数z2的实部虚部分别为a,b,则下列结论正确的是(  )
A.ab<0B.a2+b2≠1C.$\frac{a}{b}=\sqrt{3}$D.$\frac{b}{a}=\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知i为虚数单位,$\overline{z}$是z的共轭复数,若($\overline{z}$+i)(1-i)=1+3i,则|z|=(  )
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${(x-\frac{1}{2x})^6}•{x^{12}}$的展开式中含x6项的系数为(  )
A.$-\frac{1}{16}$B.$\frac{1}{32}$C.$-\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

同步练习册答案