9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2ÊÇÔ²ÐÄÔÚ¼«ÖáÉÏ£¬ÇÒ¾­¹ý¼«µãµÄÔ²£¬ÒÑÖªÇúÏßC1ÉϵĵãM£¨1£¬$\frac{\sqrt{3}}{2}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{3}$£¬ÉäÏߦÈ=$\frac{¦Ð}{3}$ÓëÇúÏßC2½»ÓÚµãD£¨1£¬$\frac{¦Ð}{3}$£©£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãA£¬BµÄ¼«×ø±ê·Ö±ðΪ£¨¦Ñ1£¬¦È£©£¬£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©£¬ÇÒÁ½µã¾ùÔÚÇúÏßC1ÉÏ£¬Çó$\frac{1}{{¦Ñ}_{1}^{2}}$+$\frac{1}{{¦Ñ}_{2}^{2}}$µÄÖµ£®

·ÖÎö £¨1£©°ÑµãM£¨1£¬$\frac{\sqrt{3}}{2}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{3}$´úÈëÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬»¯¼ò½â³ö¼´¿ÉµÃ³ö£®ÉèÔ²C2µÄ°ë¾¶ÎªR£¬ÓÉÌâÒâ¿ÉµÃ£ºÔ²C2µÄ·½³ÌΪ£º¦Ñ=2Rcos¦È£¬°ÑµãD£¨1£¬$\frac{¦Ð}{3}$£©´úÈë½âµÃR£®¿ÉµÃÔ²C2µÄj¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬¦Ñ2=x2+y2£¬´úÈëÅä·½»¯¼ò¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑÁ½µã£¨¦Ñ1£¬¦È£©£¬£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©´úÈëÇúÏßC1£¬»¯¼òÕûÀí¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©°ÑµãM£¨1£¬$\frac{\sqrt{3}}{2}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{3}$´úÈëÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬
¡à$\left\{\begin{array}{l}{1=acos\frac{¦Ð}{3}}\\{\frac{\sqrt{3}}{2}=bsin\frac{¦Ð}{3}}\end{array}\right.$£¬½âµÃa=2£¬b=1£®
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£®ÉèÔ²C2µÄ°ë¾¶ÎªR£¬ÓÉÌâÒâ¿ÉµÃ£ºÔ²C2µÄ·½³ÌΪ£º¦Ñ=2Rcos¦È£¬
°ÑµãD£¨1£¬$\frac{¦Ð}{3}$£©´úÈë¿ÉµÃ£º1=2R$cos\frac{¦Ð}{3}$£¬½âµÃR=1£®
¡àÔ²C2µÄj¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2x£¬¼´£¨x-1£©2+y2=1£®
£¨2£©¡ßÁ½µã£¨¦Ñ1£¬¦È£©£¬£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©¾ùÔÚÇúÏßC1ÉÏ£¬
¡à$\frac{£¨{¦Ñ}_{1}cos¦È£©^{2}}{4}$+$£¨{¦Ñ}_{1}sin¦È£©^{2}$=1£¬$\frac{£¨{¦Ñ}_{2}sin¦È£©^{2}}{4}$+$£¨{¦Ñ}_{2}cos¦È£©^{2}$=1£¬
¡à$\frac{1}{{¦Ñ}_{1}^{2}}$+$\frac{1}{{¦Ñ}_{2}^{2}}$=$\frac{co{s}^{2}¦È}{4}+si{n}^{2}¦È$+$\frac{si{n}^{2}¦È}{4}+co{s}^{2}¦È$=$\frac{5}{4}$£®£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢ÍÖÔ²·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚ¼«×ø±êϵÖУ¬µãP£¨2£¬$\frac{11¦Ð}{6}$£©µ½Ö±ÏߦÑsin£¨¦È-$\frac{¦Ð}{6}$£©=1µÄ¾àÀëµÈÓÚ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®$1+\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{2x-y¡Ü1}\\{x+y¡Ý2}\\{y-x¡Ü2}\end{array}\right.$£¬Ôòz=2y+xµÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®$\frac{5}{2}$C£®3D£®$\frac{5}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª1£¼x£¼y£¼z£¬Ôòa=2x£¬b=3-y£¬c=log0.5z£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¼b£¼cB£®c£¼b£¼aC£®c£¼a£¼bD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÖ±Ïßl£ºx+y=1ÔÚ¾ØÕó$A=[\begin{array}{l}m£¬n\\ 0£¬1\end{array}]$¶ÔÓ¦µÄ±ä»»×÷ÓÃϱäΪֱÏßl'£ºx-y=1£¬Çó¾ØÕóA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éèz=kx+y£¬ÆäÖÐʵÊýx£¬yÂú×ã$\left\{{\begin{array}{l}{x+y¡Ý2}\\{y¡Ü\frac{1}{2}x+2}\\{y¡Ý2x-4}\end{array}}\right.$£¬ÈôzµÄ×î´óֵΪ12£¬ÔòʵÊýkµÄÖµÊÇ£¨¡¡¡¡£©
A£®2B£®-2C£®4D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ex+m-lnx£®
£¨I£© Éèx=1ÊǺ¯Êýf£¨x£©µÄ¼«Öµµã£¬ÇóÖ¤£ºex-elnx¡Ýe£»
£¨II£© Éèx=x0ÊǺ¯Êýf£¨x£©µÄ¼«Öµµã£¬ÇÒf£¨x£©¡Ý0ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®£¨ÆäÖг£ÊýaÂú×ãalna=1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÃüÌâp£º²»µÈʽax2+ax+1£¾0µÄ½â¼¯ÎªÈ«ÌåʵÊý£¬ÔòʵÊýa¡Ê£¨0£¬4£©£»ÃüÌâq£º¡°x2-3x£¾0¡±ÊÇ¡°x£¾4¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®p¡Ä£¨?q£©C£®£¨?p£©¡ÄqD£®£¨?p£©¡Ä£¨?q£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬ÈôsinB£¬sinA£¬sinC³ÉµÈ²îÊýÁУ¬ÔòsinAµÄȡֵ·¶Î§ÊÇ$£¨{0£¬\frac{{\sqrt{3}}}{2}}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸