【题目】已知函数f(x)的导函数f '(x)的图象如图所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x),则不等式g(x)≥3x-3的解集是( )
![]()
A. [-1,1]∪[2,+∞)B. (-∞,-1]∪[1,2]
C. (-∞,-1]∪[2,+∞)D. [-1,2]
科目:高中数学 来源: 题型:
【题目】已知椭圆C1:
+
=1(a>b>0)的右焦点F(1,0),右准线l:x=4.圆C2:x2+y2=b2.A、B为椭圆上不同的两点,AB中点为M.
(1)求椭圆C1的方程;
(2)若直线AB过F点,直线OM交l于N点,求证:NF⊥AB;
(3)若直线AB与圆C2相切,求原点O到AB中垂线的最大距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
是中心在原点,焦点在
轴上的双曲线的右支,它的离心率刚好是其对应双曲线的实轴长,且一条渐近线方程是
,线段
是过曲线
右焦点
的一条弦,
是弦
的中点。
(1)求曲线
的方程;
(2)求点
到
轴距离的最小值;
(3)若作出直线
,
使点
在直线
上的射影
满足
.当点
在曲线
上运动时,求
的取值范围.
(参考公式:若
为双曲线
右支上的点,
为右焦点,则
.(
为离心率))
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=
an+n-3成立.
(1)求证:存在实数λ使得数列{an+λ}为等比数列;
(2)求数列{nan}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,点
与抛物线
的焦点
关于原点对称,过点
且斜率为
的直线
与抛物线
交于不同两点
,线段
的中点为
,直线
与抛物线
交于两点
.
(Ⅰ)判断是否存在实数
使得四边形
为平行四边形.若存在,求出
的值;若不存在,说明理由;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,且a1=1,S3+S4=S5.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1an,求数列{bn}的前2n项和T2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.在
中,若
,则![]()
B.在锐角三角形
中,不等式
恒成立
C.在
中,若
,
,则
为等腰直角三角形
D.在
中,若
,
,三角形面积
,则三角形外接圆半径为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com