精英家教网 > 高中数学 > 题目详情
若f(x)=2tanx-
2sin2
x
2
-1
sin
x
2
cos
x
2
,则f(
π
12
)
的值为______.
∵f(x)=2tanx-
2sin2
x
2
-1
sin
x
2
cos
x
2
=2 (
sinx
cosx
+
cosx
sinx
)
=
2
sinxcosx
=
4
sin2x

f(
π
12
) =
4
sin
π
6
=8

故答案为:8
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(b-8)x-a-ab.当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若函数g(x)=
a3
x2+2tanθ•x+b
在区间[1,+∞)上单调,求θ的取值范围;
(3)不等式(t-2)f(x)≥t2+(m-2)t-2m+2对x∈[-1,1]及t∈[-1,1]时恒成立,求实数m的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知A(-1,2),B(0,x+2),C(x+2tanθ-1,y+1)共线,其中θ∈(-
π
2
π
2
)

(1)将x表示为y的函数,并求出函数表达式y=f(x);
(2)若y=f(x)在[-1,
3
]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆叙道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2cl和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有a1-c1=a2-c2
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若a∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

⑤函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2.
其中所有真命题的代号有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列4个命题:
①0<a≤
1
5
是f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2;
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若α∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

其中所有假命题的代号有
①②③
①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+(b-8)x-a-ab.当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若函数g(x)=
a
3
x2+2tanθ•x+b
在区间[1,+∞)上单调,求θ的取值范围;
(3)不等式(t-2)f(x)≥t2+(m-2)t-2m+2对x∈[-1,1]及t∈[-1,1]时恒成立,求实数m的取范围.

查看答案和解析>>

同步练习册答案