精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a
b
+m+m
a
=(2,-cosωx)
b
=(sinωx,-2)
(其中ω>0,m∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为2.
(1)求ω;
(2)若f(x)在区间[8,16]上最大值为3,求m的值.
(1)f(x)=2sinωx+2cosωx+m=2
2
sin(ωx+
π
4
)+m

依题意得:2ω+
π
4
=
π
2

ω=
π
8
(6分)
(2)由(1)知f(x)=2
2
sin(
π
8
x+
π
4
)+m

又当x∈[8,16]时,
π
8
x+
π
4
∈[
5
4
π,
9
4
π]

从而当x=16时,sin(
π
8
x+
π
4
)=
2
2

2
2
2
2
+m=3

∴m=1(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的图象经过点(
π
4
,2)

(1)求实数m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a-
22x+1

(1)求证:不论a为何实数f(x)总为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)若不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
an=f(n)
,若数列{an}是单调递减数列,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).设函数f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函数f(x)在区间[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(5
3
cosx,cosx)
b
=(sinx,2cosx)
,其中x∈[
π
6
π
2
]
,设函数f(x)=
a
b
+|
b
|2+
3
2

(1)求函数f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步练习册答案