设直线是曲线的一条切线,.
(1)求切点坐标及的值;
(2)当时,存在,求实数的取值范围.
(1)切点,或者切点,;(2).
解析试题分析:(1)先设切点,然后依题意计算出,由,计算出切点的横坐标,代入切线的方程,可得切点的纵坐标,最后再将切点的坐标代入曲线C的方程计算得的值;(2)结合(1)中求出的,确定,设,然后将存在使成立问题,转化为,进而求出,分、、三种情况讨论函数在上的单调性,确定,相应求解不等式,即可确定的取值范围.
试题解析:(1)设直线与曲线相切于点
∴,解得或
代入直线方程,得切点坐标为或
切点在曲线上,∴或
综上可知,切点,或者切点, 5分
(2)∵,∴,设,若存在使成立,则只要 7分
①当即时
,是增函数,不合题意 8分
②若即
令,得,∴在上是增函数
令,解得,∴在上是减函数
,,解得 10分
③若即,
令,解得
,∴在上是增函数
∴
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ln(x+1)-x2-x.
(1)若关于x的方程f(x)=-x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(2)证明:对任意的正整数n,不等式2+++…+ >ln(n+1)都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2 (f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×< (n≥2,n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图像过坐标原点,且在点 处的切线斜率为.
(1)求实数的值;
(2) 求函数在区间上的最小值;
(Ⅲ)若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com