已知函数
.
(1)求函数
.的单调区间;
(2)设函数
的极值.
(1) 函数
的单调增区间为
,单调减区间为![]()
(2) 当
时,
无极值;当
,
在
处取得极小值
,无极大值。
解析试题分析:(1) 求单调区间只需解
不等式即可;
(2)
,在求极值时要对参数
讨论,显然当
时
为增函数,无极值,当
时可求得
的根,再讨论两侧的单调性;判断极值的方法是先求得
的根,再看在每个根的两侧导函数的正负是否一致,只有两侧导函数的符号不一样才能确定这个根是极值点.这个判断过程通常要放在一个表格中去体现.
试题解析:(1) ![]()
当
时,
,
当
时,
,
故函数
的单调增区间为
,单调减区间为
.
(2) 由题意:![]()
①当
时,
,
为
上的增函数,所以
无极值。
②当
时,令
得,
,
;
,![]()
所以
在
上单调递减,在
上单调递增
所以
在
处取得极小值,且极小值为
,无极大值
综上,当
时,
无极值;当
,
在
处取得极小值
,无极大值。
考点:1、函数的单调区间;2、函数的极值.
科目:高中数学 来源: 题型:解答题
某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知
其中AF是以A为顶点、AD为对称轴的抛物线段.试求该高科技工业园区的最大面积.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,其中
.
(1)当
时,求函数
在
处的切线方程;
(2)若函数
在区间(1,2)上不是单调函数,试求
的取值范围;
(3)已知
,如果存在
,使得函数![]()
在
处取得最小值,试求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽
为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为
,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?![]()
(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(1)若
,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当
时,求函数
的单调减区间;
(3)当
时,若
对任意的
恒成立,求
的取值的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com