精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ex-ln(xm).
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

(1)f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3ax2+bx.
(1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由.
(2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln(x+1)-x2x.
(1)若关于x的方程f(x)=-xb在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(2)证明:对任意的正整数n,不等式2++…+ >ln(n+1)都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3x2g(x)=aln xa∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数为的图象在点处的切线方程为,且,直线是函数的图象的一条切线.
(1)求函数的解析式及的值;
(2)若对于任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数.的单调区间;
(2)设函数的极值.

查看答案和解析>>

同步练习册答案