已知函数
(1)若函数存在极大值和极小值,求的取值范围;
(2)设分别为的极大值和极小值,其中且求的取值范围.
(1);(2)
解析试题分析:(1)因为函数,所以要求函数存在极大值和极小值即对函数的求导,要保证导函数的对应的方程有两个不相等的正实根.所以通过判别式大于零和韦达定理中根与系数的关系即可得到结论.
(2)根据极大值与极小值的含义得到两个相应的方程,又由两个极值点的关系,将其中一个消去,由两个极值相加可得关于关于极大值点的等式从而通过基本不等式求最值即可.
试题解析:(1)其中
由题设知且关于的方程有两个不相等的正数根,
记为满足化简得
经检验满足题设,故为所求.
(2)方法一:由题设结合知,
且
所以
,
因为,所以在区间是减函数,
所以设且,
所以在区间上是减函数,
所以
因此
方法二:由题设结合知
且
所以
,
设,,
所以在区间上是增函数,
而,设,则在时是增函数,
所以当时,,即,
所以且
因此
方法三:由方法一知
设,则
所以在区间上是增函数,而
所以
方法四:前同方法二知,
当时,关于的方程有两个不相等的正数根
那么即解得,
下同方法二.
考点:1.利用导数求极值.2.利用基本不等式求极值.3.函数与不等式的关系.4.消元解方程的思想.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3+ax2+bx.
(1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由.
(2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的导函数为,的图象在点,处的切线方程为,且,直线是函数的图象的一条切线.
(1)求函数的解析式及的值;
(2)若对于任意,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2 (f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×< (n≥2,n∈N*)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com