精英家教网 > 高中数学 > 题目详情
如图,在四面体ABCD中,截面EFGH平行于对棱AB和CD,且FG⊥GH,试问截面在什么位置时其截面面积最大.
分析:先证明截面EFGH是平行四边形,设AB=a,CD=b,∠FGH=α,再设FG=x,GH=y,由平面几何知识得
x
a
=
CG
CB
  , 
y
b
=
BG
BC
,两式相加可得y=
b
a
(a-x).
截面面积S=FG•GH•sinα=
bsinα
a
•x•(a-x)
,再利用基本不等式可得当E、F、G、H分别为相应棱的中点时,截面面积最大.
解答:解:∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG、EH,∴AB∥FG,AB∥EH,∴FG∥EH.
同理可证EF∥GH,∴截面EFGH是平行四边形.
设AB=a,CD=b,∠FGH=α (a、b、α均为定值,其中α为AB与CD所成的角).
再设FG=x,GH=y,由平面几何知识得
x
a
=
CG
CB
  , 
y
b
=
BG
BC

两式相加得
x
a
+
y
b
=1,即y=
b
a
(a-x).
∴截面面积S=FG•GH•sinα=x•
b
a
(a-x)•sinα
=
bsinα
a
•x•(a-x)

∵x>0,a-x>0,且x+(a-x)=a为定值,∴
bsinα
a
•x•(a-x)
bsinα
a
(
x+a-x
2
2
=
ab•sinα
4

∴当且仅当x=a-x,即x=
a
2
时,取等号,即截面面积最大为S=
ab
4
sinα,
即当E、F、G、H分别为相应棱的中点时,截面面积最大.
点评:本题主要考查棱锥的结构特征,基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,BC⊥面ACD,DA=DC,E、F分别为AB、AC的中点.
(1)求证:直线EF∥面BCD;
(2)求证:面DEF⊥面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武汉模拟)如图,在四面体A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小为60°.
(1)求证:平面ABC上平面BCD;
(2)求直线CD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四面体ABCD中,DA=DB=DC=1,且DA,DB,DC两两互相垂直,点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与BC所成角的余弦值的取值范围是(  )
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步练习册答案