精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点为F1、F2,渐近线为l1,l2,过点F2且与l1平行的直线交l2于M,若M在以线段F1 F2为直径的圆上,则双曲线的离心率为(  )
A、2
B、
2
C、
3
D、
5
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:已知得出过F且与双曲线C的一条渐近线平行的直线方程,与另一条渐近线方程联立即可解得交点M的坐标,代入以线段F1F2为直径的圆的方程,即可得出离心率e.
解答: 解:不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=
b
a
(x-c)

与y=-
b
a
x
联立,可得交点M(
c
2
,-
bc
2a
),
∵点M在以线段F1F2为直径的圆上,
c2
4
+
b2c2
4a2
=c2
∴b=
3
a,
∴c=
a2+b2
=2a,
∴e=
c
a
=2.
故选:A.
点评:本题考查双曲线的几何性质,考查学生的计算能力,熟练掌握双曲线的渐近线及离心率、直线的点斜式、圆的方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该场地停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为
1
3
,停车付费多于14元的概率为
5
12
,求甲停车付费6元的概率;
(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲乙二人停车付费之和为28元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从[0,10]中任取一个数x,从[0,6]中任取一个数y,则使|x-5|+|y-3|≤4的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中:
①“直线l与曲线C相切”是“直线l与曲线C只有一个公共点”的充要条件;
②“若两直线l1⊥l2,则它们的斜率之积等于-1”的逆命题;
③f(x)是R上的可导函数,“若f′(x)>0,则f(x)是R上的单调递增函数”的否命题;
④“f′(x0)=0”是“x0是f(x)的极值点”的必要不充分条件.
其中真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足
2x-y≥0
y≥x
4x+4y≥9
,则z=2x+y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y≥2
x-y≤2
0≤y≤3
,若目标函数z=y+ax仅在点(5,3)处取得最小值,则实数a的取值范围为(  )
A、(-∞,-1)
B、(0,+∞)
C、(
3
7
,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:x∈R且满足sin2x=1.命题q:x∈R且满足tanx=1.则p是q的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG:GC=DH:HC=1:2.下列说法不正确的是(  )
A、E、F、G、H四点共面
B、GE与HF的交点在直线AC上
C、EF∥面DBC
D、GE∥面ADC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=2py(p>0)的焦点为F,顶点为O,准线为l,过该抛物线上异于顶点O的任意一点A作AA1⊥l于点A1,以线段AF,AA1为邻边作平行四边形AFCA1,连接直线AC交l于点D,延长AF交抛物线于另一点B.若△AOB的面积为S△AOB,△ABD的面积为S△ABD,则
(S△AOB)2
S△ABD
的最大值为
 

查看答案和解析>>

同步练习册答案