精英家教网 > 高中数学 > 题目详情
已知变量x,y满足约束条件
x+y≥2
x-y≤2
0≤y≤3
,若目标函数z=y+ax仅在点(5,3)处取得最小值,则实数a的取值范围为(  )
A、(-∞,-1)
B、(0,+∞)
C、(
3
7
,+∞)
D、(1,+∞)
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.
解答: 解:作出不等式对应的平面区域,
由z=ax+y得y=-ax+z,
要使目标函数z=ax+y仅在点P(5,3)处取得最小值,
则阴影部分区域在直线y=-ax+z的左上方,
∴-a>0,
即a<0,
且目标函数的斜率-a大于x-y=2得斜率,
即-a>1,
解得a<-1,
即实数a的取值范围为(-∞,-1),
故选:A.
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.根据条件目标函数z=ax+y仅在点P(5,3)处取得最大值,确定直线的位置是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)已知椭圆
x2
36
+
y2
9
=1
的一条弦的中点为P(4,2),求此弦所在直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在[0,2]上任取两数a,b,则函数f(x)=x2+
a
x+b有零点的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次选秀比赛中,五位评委为一位表演者打分,若去掉一个最低分后平均分为90分,去掉一个最高分后平均分为86分.那么最高分比最低分高
 
分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点为F1、F2,渐近线为l1,l2,过点F2且与l1平行的直线交l2于M,若M在以线段F1 F2为直径的圆上,则双曲线的离心率为(  )
A、2
B、
2
C、
3
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)-f(x)g′(x)<0,
f(x)
g(x)
=ax
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,则关于x的方程abx2+
2
x+
5
2
=0(b∈(0,1))
有两个不同实根的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
kx+1, x≤0
log2x, x>0
下列是关于函数y=f[f(x)]+1的零点个数的4个判断:
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点.
则正确的判断是(  )
A、①④B、②③C、①②D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC所在平面内一点,且2
OA
+
OB
+
OC
=0
,则△ABO与△ABC的面积之比为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

一只蚂蚁在边长为4的正三角形区域内随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为
 

查看答案和解析>>

同步练习册答案