精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,为椭圆上的一个动点,弦分别过焦点,当垂直于轴时,恰好有

(Ⅰ)求椭圆的离心率;
(Ⅱ)设.
①当点恰为椭圆短轴的一个端点时,求的值;
②当点为该椭圆上的一个动点时,试判断是否为定值?
若是,请证明;若不是,请说明理由.

(1) (2)(3)

解析试题分析:(Ⅰ)法一:设,则.由题设及椭圆定义得
,消去,所以离心率. ………………2分
法二:由椭圆方程得,,即,可求.
(Ⅱ)法一:由(Ⅰ)知,,所以椭圆方程可化为.
①当A点恰为椭圆短轴的一个端点时,,直线的方程为.
,解得
∴点的坐标为.
,所以,所以. ………5分
②当A点为该椭圆上的一个动点时,为定值6.
证明:设,则.
为椭圆的长轴端点,则
所以.               ………………7分
为椭圆上异于长轴端点的任意一点,则由得,,所以.
又直线的方程为,所以由
.
,∴.
由韦达定理得 ,所以. 同理.
.
综上证得,当A点为该椭圆上的一个动点时,为定值6. ………………12分
法二:设,则
,∴;            ………………6分
①,②,将代入②得:
 即③;
①得:;                               ……………10分
同理:由,∴
.                         &nb

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(满分12分)已知椭圆的一个顶点为B,离心率
直线l交椭圆于MN两点.
(Ⅰ)求椭圆的标准方程;
(II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.
求椭圆C的离心率;
如果|AB|=,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数(其中为常数)的图像经过点A、B是函数图像上的点,正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,是一系列正三角形,记它们的边长是,求数列的通项公式;
(3) 在(2)的条件下,数列满足,记的前项和为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,点,直线都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)已知点是椭圆E)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图椭圆的两个焦点为和顶点构成面积为32的正方形.

(1)求此时椭圆的方程;
(2)设斜率为的直线与椭圆相交于不同的两点的中点,且. 问:两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆C中心在原点,焦点在轴上,一条经过点且倾斜角余弦值为的直线交椭圆于A,B两点,交轴于M点,又.
(1)求直线的方程;
(2)求椭圆C长轴的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的离心率为,椭圆短轴长为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值。

查看答案和解析>>

同步练习册答案