(本小题满分12分)
如图,为椭圆上的一个动点,弦、分别过焦点、,当垂直于轴时,恰好有
(Ⅰ)求椭圆的离心率;
(Ⅱ)设.
①当点恰为椭圆短轴的一个端点时,求的值;
②当点为该椭圆上的一个动点时,试判断是否为定值?
若是,请证明;若不是,请说明理由.
(1) (2)(3)
解析试题分析:(Ⅰ)法一:设,则.由题设及椭圆定义得
,消去得,所以离心率. ………………2分
法二:由椭圆方程得,又,,即,可求.
(Ⅱ)法一:由(Ⅰ)知,,所以椭圆方程可化为.
①当A点恰为椭圆短轴的一个端点时,,直线的方程为.
由得,解得,
∴点的坐标为.
又,所以,,所以,. ………5分
②当A点为该椭圆上的一个动点时,为定值6.
证明:设,,则.
若为椭圆的长轴端点,则或,
所以. ………………7分
若为椭圆上异于长轴端点的任意一点,则由得,,所以.
又直线的方程为,所以由得
.
,∴.
由韦达定理得 ,所以. 同理.
∴.
综上证得,当A点为该椭圆上的一个动点时,为定值6. ………………12分
法二:设,,则
∵,∴; ………………6分
又①,②,将、代入②得:
即③;
③①得:; ……………10分
同理:由得,∴,
∴. &nb
科目:高中数学 来源: 题型:解答题
(满分12分)已知椭圆的一个顶点为B,离心率,
直线l交椭圆于M、N两点.
(Ⅰ)求椭圆的标准方程;
(II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知函数(其中且为常数)的图像经过点A、B.是函数图像上的点,是正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,是一系列正三角形,记它们的边长是,求数列的通项公式;
(3) 在(2)的条件下,数列满足,记的前项和为,证明:。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点,点,直线、都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于、两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题15分)已知点是椭圆E:()上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,().求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图椭圆:的两个焦点为、和顶点、构成面积为32的正方形.
(1)求此时椭圆的方程;
(2)设斜率为的直线与椭圆相交于不同的两点、、为的中点,且. 问:、两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C中心在原点,焦点在轴上,一条经过点且倾斜角余弦值为的直线交椭圆于A,B两点,交轴于M点,又.
(1)求直线的方程;
(2)求椭圆C长轴的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆的离心率为,椭圆短轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com