精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=3,an+1+an=3•2n,n∈N*
(1)证明数列{an-2n}是等比数列,并求数列{an}的通项公式;
(2)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若1<r<s且r,s∈N*,求证:使得a1,ar,as成等差数列的点列(r,s)在某一直线上.
考点:数列递推式
专题:等差数列与等比数列
分析:(1)将条件变形,构造符合条件的数列,即可证明数列{an-2n}是等比数列,从而可求数列{an}的通项公式;
(2)假设在数列{an}中存在连续三项成等差数列,代入相应的项,化简可得结论;
(3)若a1,ar,as成等差数列,则2ar=a1+as,代入变形整理,对r、s进行讨论,可得结论.
解答: (1)证明:将已知条件an+1+an=3•2n变形为an+1-2n+1=-(an-2n)…(1分)
由于a1-2=3-2=1≠0,则
an+1-2n+1
an-2n
=-1
(常数)…(3分)
即数列{an-2n}是以1为首项,公比为-1的等比数列…(4分)
所以an-2n=1•(-1)n-1=(-1)n-1,即an=2n+(-1)n-1(n∈N*).…(5分)
(2)解:假设在数列{an}中存在连续三项成等差数列,不妨设连续的三项依次为ak-1,ak,ak+1(k≥2,k∈N*),由题意得,2ak=ak-1+ak+1
ak=2k+(-1)k-1ak-1=2k-1+(-1)k-2ak+1=2k+1+(-1)k代入上式得…(7分)
2[2k+(-1)k-1]=[2k-1+(-1)k-2]+[2k+1+(-1)k]…(8分)
化简得,-2k-1=4•(-1)k-2,即2k-1=4•(-1)k-1,得(-2)k-1=4,解得k=3,
所以,存在满足条件的连续三项为a2,a3,a4成等比数列.…(10分)
(3)证明:若a1,ar,as成等差数列,则2ar=a1+as
即2[2r+(-1)r-1]=3+2s+(-1)s-1,变形得2s-2r+1=2•(-1)r-1-(-1)s-1-3…(11分)
由于若r,s∈N*且1<r<s,下面对r、s进行讨论:
①若r,s均为偶数,则2s-2r+1<0,解得s<r+1,与1<r<s矛盾,舍去;
②若r为奇数,s为偶数,则2s-2r+1=0,解得s=r+1;
③若r为偶数,s为奇数,则2s-2r+1<0,解得s<r+1,与1<r<s矛盾,舍去;
④若r,s均为奇数,则2s-2r+1<0,解得s<r+1,与1<r<s矛盾,舍去;…(15分)
综上①②③④可知,只有当r为奇数,s为偶数时,a1,ar,as成等差数列,
此时满足条件点列(r,s)落在直线y=x+1(其中
2
∈(1, 2]
为正奇数)上.…(16分)(不写出直线方程扣1分)
点评:本题考查数列递推式,考查等比数列的证明,考查数列的通项,考查分类讨论的数学思想,考查学生分析解决问题的能力,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(a,b),
n
=(sin2x,2cos2x),若f(x)=
m
n
,且f(0)=8,f(
π
6
)=12

(1)求a,b的值;
(2)求函数f(x)的最大值及取得最大值时的x的集合;
(3)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足(x-1)2+y2=16,则x2+y2的最小值为(  )
A、3B、5C、9D、25

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若a4,a3,a5成等差数列,且Sk=33,Sk+1=-63,其中k∈N*,则Sk+2的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABE与△ACD都是正三角形,且
BA
=
AC
CM
=
MD
,若
BM
AE
AD
,则λμ=(  )
A、3
B、-3
C、
3
D、-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+2
3
sinxcosx

(1)求函数f(x)的值域,并写出函数f(x)的单调递增区间;
(2)若0<θ<
π
6
,且f(θ)=
4
3
,计算cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+2x , x≥0 
-x2+bx , x<0
是偶函数,直线y=t与函数f(x)的图象自左至右依次交于四个不同点A、B、C、D,若|AB|=|BC|,则实数t的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛一枚均匀硬币,正,反面出现的概率都是
1
2
,反复投掷,数列{an}定义:an=
1(第n次投掷出现正面)
-1(第n次投掷出现反面)
,若Sn=a1+a2+…+an(n∈N),则事件S4>0的概率为(  )
A、
1
16
B、
1
4
C、
5
16
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

将一根长为3m的木棒随机折成三段,折成的这三段木棒能够围成三角形的概率是(  )
A、
7
8
B、
3
8
C、
1
4
D、
1
8

查看答案和解析>>

同步练习册答案