【题目】选修4—4:坐标系与参数方程
点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,以极点O为中心,将点P逆时针旋转90°得到点Q,设点Q的轨迹为曲线C2.
(Ⅰ)求曲线C1,C2的极坐标方程;
(Ⅱ)射线
(ρ>0)与曲线C1,C2分别交于A,B两点,设定点M(2,0),求△MAB的面积.
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点在原点,对称轴是y轴,直线
与抛物线
交于不同的两点
、
,线段
中点
的纵坐标为2,且
.
(1)求抛物线
的标准方程;
(2)设抛物线的焦点为
,若直线
经过焦点
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
.
(1)若过点
的直线l与椭圆C恒有公共点,求实数a的取值范围;
(2)若存在以点B(0,2)为圆心的圆与椭圆C有四个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店为迎接端午节,推出两款粽子:花生粽和肉粽.为调查这两款粽子的受欢迎程度,店员连续10天记录了这两种粽子的销售量,如下表表示(其中销售单位:个)
天数 销售量
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
花生粽 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 | 100 |
肉粽 | 88 | 97 | 98 | 95 | 101 | 98 | 103 | 106 | 103 | 111 | 100 |
(1)根据两组数据完成下面茎叶图:
![]()
(2)统计学知识,请评述哪款粽子更受欢迎;
(3)求肉粽销售量y关于天数t的线性回归方程,并预估第15天肉粽的销售量(回归方程系数精确到0.1)
参考数据:
,参考公式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,椭圆
的离心率为
是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.
(1)求E的方程;
(2)设过点
且斜率为k的直线
与椭圆E交于不同的两M、N,且
,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
.
![]()
(1)若
为棱
的中点,求证:
平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,双曲线
:
经过点
,其中一条近线的方程为
,椭圆
:
与双曲线
有相同的焦点
椭圆
的左焦点,左顶点和上顶点分别为F,A,B,且点F到直线AB的距离为
.
求双曲线
的方程;
求椭圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
,直线
与圆
交于
,
两点.
(1)求圆
的直角坐标方程及弦
的长;
(2)动点
在圆
上(不与
,
重合),试求
的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com