精英家教网 > 高中数学 > 题目详情
1.点($\sqrt{2}$,2)在幂函数f(x)的图象上,点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上.
(1)判断f(x)与g(x)的奇偶性;
(2)设h(x)=($\frac{1}{3}$)f(x),是否存在x1∈R,x2∈(0,1],使h(x1)=g(x2)?若存在,求x1,x2的值;若不存在,说明理由.

分析 (1)利用待定系数法结合指数函数的性质进行求解即可.
(2)求出函数h(x)和g(x)的取值范围,判断方程是否有解即可.

解答 解:(1)设f(x)=xα,g(x)=xβ
∵点($\sqrt{2}$,2)在幂函数f(x)的图象上,点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上.
∴f($\sqrt{2}$)=($\sqrt{2}$)α=2,即α=2,
g(-2)=(-2)β=$\frac{1}{4}$=(-2)-2,则β=-2,
即f(x)=x2,g(x)=x-2
则f(-x)=(-x)2=x2=f(x),g(-x)=(-x)-2=x-2=g(x),
故函数f(x)和g(x)都是偶函数.
(2)h(x)=($\frac{1}{3}$)f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}}$,
若x1∈R,则x2≥0,则h(x)=($\frac{1}{3}$)${\;}^{{x}^{2}}$∈(0,$\frac{1}{3}$],
若x2∈(0,1],则g(x2)=x2-2∈[1,+∞),
则h(x1)=g(x2)无解,
故不存在x1∈R,x2∈(0,1],使h(x1)=g(x2).

点评 本题主要考查幂函数的解析式的求解,利用待定系数法是解决本题的关键.结合指数函数单调性的性质进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=|ax2+bx+c|(a≠0)的定义域分成四个单调区间的充要条件是 (  )
A.a>0且b2-4ac>0B.-$\frac{b}{2a}$>0C.b2-4ac>0D.-$\frac{b}{2a}<0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A为椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上的点,点B坐标为(2,1),有$\overrightarrow{AP}=2\overrightarrow{PB}$,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}}$.
(1)证明f(x)为偶函数;
(2)若不等式k≤xf(x)+$\frac{1}{x}$在x∈[1,3]上恒成立,求实数k的取值范围;
(3)当x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)时,函数g(x)=tf(x)+1,(t≥0)的值域为[2-3m,2-3n],求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=tan(3x+φ)的图象的一个对称中心是($\frac{π}{4}$,0),其中0<φ<$\frac{π}{2}$,试求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别为角A,B,C的对边,且4sin2$\frac{A+C}{2}$-cos2B=$\frac{23}{9}$.求cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数a,b满足$\left\{\begin{array}{l}{a+b-2≥0}\\{b-a-1≤0}\\{a≤1}\end{array}\right.$,则$\frac{a+2b}{2a+b}$的最大值为(  )
A.1B.$\frac{5}{4}$C.$\frac{7}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点A的坐标为(a,0)(a∈R),则曲线y2=2x上的点到A点的距离的最小值为$\left\{\begin{array}{l}{\sqrt{2a-1},a≥1}\\{|a|,a<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知全集U=R,集合A={y|y=2x},B={x|-1≤x≤3},C={x|a-1≤x≤2a}.
(1)求(∁UB)∩A;
(2)若A∩C=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案