精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x-cosx,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a3=______.
∵f(x)=2x-cosx,
∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)-(cosa1+cosa2+…+cosa5),
∵{an}是公差为
π
8
的等差数列,
∴a1+a2+…+a5=5a3,由和差化积公式可得,
cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3-
π
8
×2)+cos(a3+
π
8
×2)]+[cos(a3-
π
8
)+cos(a3+
π
8
)]+cosa3
=2cos
(a3-
π
4
)+(a3+
π
4
)
2
cos
(a3-
π
4
)-(a3+
π
4
)
2
+2cos
(a3-
π
8
)+(a3+
π
8
)
2
cos
(a3-
π
8
)-(a3+
π
8
)
2
+cosa3
=2cosa3
2
2
+2cosa3•cos(-
π
8
)+cosa3
=cosa3(1+
2
+
2+
2

则cosa1+cosa2+…+cosa5的结果不含π,
又∵f(a1)+f(a2)+…+f(a5)=5π,
∴cosa3=0,故a3=
π
2

[f(a3)]2-a1a32-(
π
2
-2•
π
8
π
2
2-
π2
8
=
7π2
8

故答案为:
7π2
8
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设函数f(x)=2x+3,g(x)=3x-5,则f(g(1))=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(2x+1)(3x+a)
x
为奇函数,则a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+x-4,则方程f(x)=0一定存在根的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案