精英家教网 > 高中数学 > 题目详情

【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

(1)若将频率视为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率;(结果用分数表示)

(2)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望

【答案】(1);(2)分布列见解析,.

【解析】

(1)先求出从个水果中随机抽取一个,抽到礼品果的事件的概率,通过题意可知现有放回地随机抽取个,设抽到礼品果的个数为服从二项分布,利用二项分布的概率公式可以求出从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率;

(2)通过分层抽样的方法可以求出从个水果中抽取个,精品果、非精品果的个数,由题意可知:服从超几何分布,这样可以根据超几何分布的公式列出的分布列,再根据数学期望的计算公式求出.

(1)设从个水果中随机抽取一个,抽到礼品果的事件为,则,

现有放回地随机抽取个,设抽到礼品果的个数为,则,

所以恰好抽到个礼品果的概率为.

(2)用分层抽样的方法从个水果中抽取个,则其中精品果个,非精品果个,

现从中抽取个,则精品果的数量服从超几何分布,所有可能的取值为,

所以的分布列如下:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是

A. 24B. 16C. 8D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若在定义域内有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是____.

①存在点,使得平面平面

②存在点,使得平面

的面积不可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)求时,的单调区间;

2)若存在,使得对任意的,都有,求的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点H在正方体的对角线上,∠HDA=

(1)求DH所成角的大小;

(2)求DH与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列的公差不为0是其前项和,给出下列命题:

①若,且,则都是中的最大项;

②给定,对一切,都有

③若,则中一定有最小项;

④存在,使得同号.

其中正确命题的个数为(

A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案