精英家教网 > 高中数学 > 题目详情
求由曲线y=
x
,y=2-x,y=-
1
3
x围成图形的面积.
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出由曲线y=
x
,y=2-x,y=-
1
3
x围成图形的面积,即可求得结论.
解答: 解:由题意,由y=
x
,y=2-x,y=-
1
3
x可得交点坐标(1,1),(0,0),(3,-1),
则S=
1
0
[
x
-(-
1
3
x)dx+
3
1
[(2-x)-(-
1
3
x)]dx

=(
2
3
x
3
2
+
1
6
x2
|
1
0
+(2x-
1
2
x2+
1
6
x2
|
3
1
=
13
6
点评:利用定积分求面积,解题的关键是确定被积区间及被积函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知λ∈R,函数f(x)=lnx-
λ(x-1)
x+λ-1
,其中x∈[1,+∞).
(Ⅰ)当λ=2时,求f(x)的最小值;
(Ⅱ)在函数y=lnx的图象上取点Pn(n,lnn)(n∈N*),记线段PnPn+1的斜率为kn,Sn=
1
k1
+
1
k2
+…+
1
kn
.对任意正整数n,试证明:
(ⅰ)Sn
n(n+2)
2
;           
(ⅱ)Sn
n(3n+5)
6

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:当x∈[0,1]时,
2
2
x≤sinx≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=x-
x2
2
+
x3
3
-…+
(-1)n+1xn
n
-ln(1+x),n∈N*
(Ⅰ)判断函数fn(x)在(0,1)内的单调性,并说明理由;
(Ⅱ)求最大的整数α,使得|fn(x)|<
1
nα
对所有的n∈N*及x∈(0,1)都成立.(注:ln2≈0.6931.)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非空有限实数集S的所有非空子集依次记为S1,S2,S3,…,集合Sk中所有元素的平均值记为bk.将所有bk组成数组T:b1,b2,b3,…,数组T中所有数的平均值记为m(T).
(1)若S={1,2},求m(T);
(2)若S={a1,a2,…,an}(n∈N*,n≥2),求m(T).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点.
(1)证明:平面ABC⊥平面ADC;
(2)若∠BDC=60°,求直线BM与CD所成的余弦值的大小.
(3)若∠BDC=60°,求二面角C-BM-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线y2=2px(p>0)的焦点F的直线l与抛物线交于A,B两点,求证:
1
FA
+
1
FB
=
2
p

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|
π
2
)的部分图象,
(1)求函数f(x)的解析式;
(2)当x∈(-
π
2
,0)
时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(x,3),
b
=(3,1),且
a
b
,则x=
 

查看答案和解析>>

同步练习册答案