精英家教网 > 高中数学 > 题目详情
如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点.
(1)证明:平面ABC⊥平面ADC;
(2)若∠BDC=60°,求直线BM与CD所成的余弦值的大小.
(3)若∠BDC=60°,求二面角C-BM-D的大小.
考点:二面角的平面角及求法,异面直线及其所成的角,平面与平面垂直的判定
专题:空间角
分析:(1)由已知条件推导出BC⊥AD,从而得到BC⊥平面ACD,由此能够证明平面ABC⊥平面ADC.
(2)取AC中点N,连结MN,BN,由已知条件推导出∠NMB是直线BM与CD所成的角,由此能求出直线BM与CD所成的余弦值.
(3)作CG⊥BD于G,作GH⊥BM于旧H,连结HG,CH,由已知条件推导出∠CHG为二面角的平面角,由此能求出二面角C-BM-D的大小.
解答: (1)证明:∵AD⊥平面BCD,BC?平面BCD,∴BC⊥AD,
又∵BC⊥CD,AD∩CD=D,∴BC⊥平面ACD,
又∵BC?平面ABC,∴平面ABC⊥平面ADC.
(2)解:取AC中点N,连结MN,BN,
∵M是AD中点,∴MN∥DC,
∴∠NMB是直线BM与CD所成的角,
∵AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2

∴CD=
2
,BC=
8-2
=
6
,AC=
4+2
=
6
,AB=
4+8
=2
3

∴cos∠BCA=
6+6-12
2×6
=0,∴∠BCA=90°,
∴BN=
BC2+CN2
=
6+
6
4
=
30
2
,MN=
1
2
CD
=
2
2

BM=
BD2+DM2
=
8+1
=3,
∴cos∠NMB=
9+
1
2
-
30
4
2×3×
2
2
=
2
3

∴直线BM与CD所成的余弦值为
2
3

(3)解:作CG⊥BD于G,作GH⊥BM于旧H,连结HG,CH,
∵AD⊥平面BCD,CG?平面BCD,∴CG⊥AD,
又∵CG⊥BD,AD∩BD=D,∴CG⊥平面ABD,
又∵BM?平面ABD,∴BM⊥CG,
又∵BM⊥CH,CG∩GH=G,∴BM⊥平面CGH,
∵CH?平面CGH∴BM⊥CH,
∴∠CHG为二面角的平面角.
在Rt△BCD中,
CD=BDcos60°=
2
,CG=CDsin60°=
6
2
,BG=BCsin60°=
3
2
2

在Rt△BDM中,HG=
BG?DM
BM
=
2
2

在Rt△CHG中,tan∠CHG=
CG
HG
=
6
2
2
2
=
3

∴∠CHG=60°,即二面角C-BM-D的大小为60°.
点评:本题考查平面与平面垂直的证明,考查直线与直线所成角的余弦值的求法,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

画出y=cosx的图象,写出其单调区间,对称轴,对称中心并写出函数最大值,最小值及对应x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+sinxcosx,x∈R.
(1)求f(
8
)的值;
(2)求函数f(x)=cos2x+4cosxsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,由曲线y=x2+4与直线y=5x,x=0,x=4所围成平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求由曲线y=
x
,y=2-x,y=-
1
3
x围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,AB⊥AD,平面PAD⊥平面ABCD,若AB=8,DC=2,AD=6
2
,PA=4,∠PAD=45°,且
AO
=
1
3
AD

(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)设平面PAD与平面PBC所成二面角的大小为θ(0°<θ≤90°),求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2(ωx+π)+
3
sinωx•sin(ωx+
2
)(ω>0)的最小正周期为2π.
(1)求ω的值;
(2)求函数f(x)在区间[0,
3
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤x-1
x≤3
x+5y≥4
,则
x2
y
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个学习小组各有10名同学,他们在一次数学测验中的成绩可用如图的茎叶图表示.则在这次测验中成绩较好的是
 
组.

查看答案和解析>>

同步练习册答案