精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则$\frac{b}{a}$=-4.

分析 若函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数f(x)=ax2+bx+c(a≠0)的图象关于直线x=2对称,进而得到答案.

解答 解:∵函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,
故函数f(x)=ax2+bx+c(a≠0)的图象关于直线x=2对称,
即$-\frac{b}{2a}$=2,
∴$\frac{b}{a}$=-4,
故答案为:-4

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义域在(-∞,0)∪(0,+∞)上的函数,对任意非零实数a,b满足f(ab)=f(a)+f(b),且f(x)在(0,+∞)上是增函数.
(1)求f(1),f(-1)的值;
(2)若f(3)=1,求f(x)+f(x-2)>1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在R上的函数f(x)=(k+2)x-k-1(k∈R)满足f($\frac{1}{2}$)<f($\frac{1}{3}$),则k的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+1,g(x)=3x+5.
(1)当x∈[0,m]时,恒有f(x)≤g(x),求m的最大值.
(2)非空集合A满足:对于A中的任意一个x,总有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列三个命题:
(1)当x=1时,x+$\frac{4}{x+1}$的值最小;
(2)函数y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$有最小值2;
(3)函数y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$有最小值2;
上述命题中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=x4-3x2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设任意实数x,y满足|x|<1,|y|<1,求证:$\frac{1}{1-{x}^{2}}$+$\frac{1}{1-{y}^{2}}$≥$\frac{2}{1-xy}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)是定义在实数集R上的函数,且对任意实数x,y满足f(x-y)=f(x)+f(y)+xy-1恒成立.
(1)求f(0),f(1);
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{2x+1,x<0}\end{array}\right.$,若f(x)>x,则x的取值范围是(-1,0).

查看答案和解析>>

同步练习册答案