精英家教网 > 高中数学 > 题目详情

【题目】近年电子商务蓬勃发展,现从某电子商务平台评价系统中随机选出200次成功交易,并对其评价进行统计,统计结果显示:网购者对商品的满意率为0.70,对快递的满意率为0.60,其中对商品和快递都满意的交易为80次.

1)根据已知条件完成下面的2×2列联表,并回答在犯错误的概率不超过0.10的前提下,能否认为“网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

80

对商品不满意

合计

200

2)为进一步提高购物者的满意度,平台按分层抽样方法从200次交易中抽取10次交易进行问卷调查,详细了解满意与否的具体原因,并在这10次交易中再随机抽取2次进行电话回访,听取购物者意见.求电话回访的2次交易至少有一次对商品和快递都满意的概率.

附:(其中为样本容量)

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】1列联表答案见解析,网购者对商品满意与对快递满意之间有关系.(2

【解析】

1)由题意完成列联表,将数据代入中,并与2.706比较大小,即可得到结果;

2)由分层抽样求得10次中对商品和快递都满意的交易有4,进而求解即可.

1)由题,对商品满意的交易有次;对快递满意的有次,

列联表:

对快递满意

对快递不满意

合计

对商品满意

对商品不满意

合计

所以,

由于,所以根据以上数据,在犯错误的概率不超过的前提下没有证据表明“网购者对商品满意与对快递满意之间有关系”.

2)由(1)中的列联表,

抽取的次交易中,对商品和快递都满意的交易有次,

所以在抽取的次交易中,至少一次对商品和快递都满意的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左,右焦点分别为点又恰为抛物线的焦点,以为直径的圆与椭圆仅有两个公共点.

1)求椭圆的标准方程;

2)若直线相交于两点,记点到直线的距离分别为.直线相交于两点,记的面积分别为

(ⅰ)证明:的周长为定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f x=ax﹣exa∈R),gx=

)求函数f x)的单调区间;

x00+∞),使不等式f x≤gx﹣ex成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上以透空的感觉和艺术享受.在中国南北方的剪纸艺术,通过一把剪刀、一张纸、就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准,用电量不超过的部分按平价收费,超出的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以分组的频率分布直方图如图所示,用电量在的居民户数比用电量在的居民户数多11户.

1)求直方图中的值;

2)(i)用样本估计总体,如果希望至少85%的居民月用电量低于标准,求月用电量的最低标准应定为多少度,并说明理由;

ii)若将频率视为概率,现从该市所有居民中随机抽取3户,其中月用电量低于(i)中最低标准的居民户数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知的两顶点坐标,圆的内切圆,在边上的切点分别为

(Ⅰ)求证:为定值,并求出动点的轨迹的方程;

(Ⅱ)过的斜率不为零直线交曲线两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为φ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.

1)求C1的极坐标方程;

2)若C1与曲线C2ρ2sinθ交于AB两点,求|OA||OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列(任意项都不为零)的前项和为,首项为,对于任意,满足.

1)数列的通项公式;

2)是否存在使得成等比数列,且成等差数列?若存在,试求的值;若不存在,请说明理由;

3)设数列,若由的前项依次构成的数列是单调递增数列,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个数列,当同时在时取得相同的最大值,我们称具有性质,其中.

1)设的二项展开式中的系数为),,记,依次下去,,组成的数列是;同样地,的二项展开式中的系数为),,记,依次下去,,组成的数列是;判别是否具有性质,请说明理由;

2)数列的前项和是,数列的前项和是,若具有性质,则这样的数列一共有多少个?请说明理由;

3)两个有限项数列满足,且,是否存在实数,使得具有性质,请说明理由.

查看答案和解析>>

同步练习册答案