分析 对等比数列的前n项和取极限列不等式解出q即可.
解答 解:∵a2+a3+…+an+…=$\underset{lim}{n→+∞}$Sn-a1=$\underset{lim}{n→+∞}$$\frac{{a}_{1}(1-{q}^{n})}{1-q}$-a1=$\frac{{a}_{1}}{1-q}$-a1,
∴$\frac{{a}_{1}}{1-q}$-a1≤$\frac{{a}_{1}}{2}$,a1>0,
∴$\frac{1}{1-q}$≤$\frac{3}{2}$,又|q|<1
解得-1<q≤$\frac{1}{3}$,又q≠0,
∴q的范围是(-1,0)∪(0,$\frac{1}{3}$].
故答案为:(-1,0)∪(0,$\frac{1}{3}$].
点评 本题考查了等比数列的前n项和公式,不等式的解法,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{{\sqrt{14}}}{4}$ | C. | $\sqrt{3}$或 $\frac{{\sqrt{14}}}{4}$ | D. | $\frac{{\sqrt{14}}}{4}$或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)在(1,2)或[2,3)内有零点 | B. | 函数f(x)在(3,5)内无零点 | ||
| C. | 函数f(x)在(2,5)内有零点 | D. | 函数f(x)在(2,4)内不一定有零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com