精英家教网 > 高中数学 > 题目详情
12.(1)计算$\frac{\sqrt{3}sin(-1200°)}{tan\frac{11}{3}π}$-cos585°•tan$(-\frac{37π}{4})$
(2)化简$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}•sin(α-2π)•cos(2π-α)$.

分析 (1)利用诱导公式,特殊角的三角函数值即可计算求值得解;
(2)利用诱导公式化简即可得解.

解答 解:(1)原式=$\frac{\sqrt{3}sin(-120°-3×360°)}{tan(3π+\frac{2π}{3})}$-cos(225°+360°)•tan(-9π-$\frac{1}{4}$π)
=$\frac{-\sqrt{3}sin120°}{tan\frac{2π}{3}}$+cos 225°tan$\frac{π}{4}$=$\frac{-\sqrt{3}sin60°}{-tan\frac{π}{3}}$+(-cos 45°)•tan$\frac{π}{4}$
=$\frac{\sqrt{3}•\frac{\sqrt{3}}{2}}{\sqrt{3}}$+(-$\frac{\sqrt{2}}{2}$)×1=$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}$.
(2)原式=$\frac{sinα}{cosα}$•sinα•cosα=sin2α.

点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(1)设x>0,y>0,若$\sqrt{2}$是2x与4y的等比中项,则①x2+2y2的最小值为$\frac{1}{3}$.②$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$.
(2)根据以上两个小题的解答,总结说明含条件等式的求最值问题的解决方法(写出两个)
①二次函数的性质②均值不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某程序流程图如图所示,依次输入函数$f(x)=sin(x-\frac{π}{6})$,$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$,f(x)=tanx,$f(x)=cos(2x-\frac{π}{6})$,执行该程序,输出的数值p=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等比数列{an}的首项a1>0,公比为q(|q|<1),满足a2+a3+…+an+…≤$\frac{{a}_{1}}{2}$,则公比q的取值范围是(-1,0)∪(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读右边程序,若输入的a,b值分别为3,-5,则输出的a,b值分别为(  )
A.-1,4B.3,$\frac{1}{2}$C.$\frac{1}{2},-\frac{5}{4}$D.3,$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若曲线y=f(x)在点(x0,f(x0))处的切线方程为3x-y+1=0,则(  )
A.f′(x0)<0B.f′(x0)>0C.f′(x0)=0D.f′(x0)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前项和为${S_n}={n^2}-3n$,则通项公式an等于(  )
A.an=2n-3B.an=2n-4C.an=3-3nD.an=2n-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=|x|-1,又g(x)=$\left\{\begin{array}{l}{f(x),x≤1}\\{\frac{lnx}{x},x>1}\end{array}\right.$,若函数F(x)=g(x)-kx在区间[-7,+∞)上恰有7个零点,则实数k的取值范围为(  )
A.($\frac{1}{6}$,$\frac{1}{4}$)B.($\frac{1}{6}$,$\frac{1}{2e}$)C.($\frac{1}{8}$,$\frac{1}{2e}$)D.($\frac{1}{2e}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点F与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点重合,抛物线C的准线l与x轴的交点为M,过点M且斜率为k的直线l1交抛物线C于A,B两点,线段AB的中点为P,直线PF与抛物线C交于D,E两点
(Ⅰ)求抛物线C的方程;
(Ⅱ)若λ=$\frac{|MA|•|MB|}{|FD|•|FE|}$,写出λ关于k的函数解析式,并求实数λ的取值范围.

查看答案和解析>>

同步练习册答案