精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)唯一的零点在区间(1,3)内,那么下面命题错误的是(  )
A.函数f(x)在(1,2)或[2,3)内有零点B.函数f(x)在(3,5)内无零点
C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点

分析 利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选.

解答 解:由题意,可知该函数的唯一零点在区间(1,3)内,在其他区间不会存在零点.故A、B选项正确,
函数的零点可能在区间(2,3)内,也可能在(1,2)内,故C项不一定正确,
函数的零点可能在区间(2,3)内,也可能在(1,2)内,故函数在(2,4)内不一定有零点,D项正确.
故选C.

点评 本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定.注意到命题说法的等价说法在判断中的作用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知△PF1F2的两个顶点为F1(-$\sqrt{2}$a,0),F2($\sqrt{2}$a,0)(a>0),顶点P在曲线C上运动,△PF1F2的内切圆与x轴的切点为A,满足|AF1|-|AF2|=2a.
(1)设D(m,n)为曲线C上一点,试判断直线l:mx-ny=a2与曲线C的位置关系;
(2)过曲线C上任意两个不同点M,N分作C的切线l1,l2,若l1与l2的交点为E,试探究:对于任意的正实数a,直线OE(O是原点)是否经过MN的中点G?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间的产品较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某程序流程图如图所示,依次输入函数$f(x)=sin(x-\frac{π}{6})$,$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$,f(x)=tanx,$f(x)=cos(2x-\frac{π}{6})$,执行该程序,输出的数值p=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若P(A)=0.5,P(B)=0.3,P(AB)=0.2,则P(A|B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等比数列{an}的首项a1>0,公比为q(|q|<1),满足a2+a3+…+an+…≤$\frac{{a}_{1}}{2}$,则公比q的取值范围是(-1,0)∪(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读右边程序,若输入的a,b值分别为3,-5,则输出的a,b值分别为(  )
A.-1,4B.3,$\frac{1}{2}$C.$\frac{1}{2},-\frac{5}{4}$D.3,$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前项和为${S_n}={n^2}-3n$,则通项公式an等于(  )
A.an=2n-3B.an=2n-4C.an=3-3nD.an=2n-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$f′(1)x+xlnx
(1)求函数f(x)的极值;
(2)若k∈Z,且f(x)>k(x-1)对任意的x∈(1,+∞)都成立,求整数k的最大值.

查看答案和解析>>

同步练习册答案