【题目】如图,在三棱锥
中,AE垂直于平面
,
,
,点F为平面ABC内一点,记直线EF与平面BCE所成角为
,直线EF与平面ABC所成角为
.
![]()
Ⅰ
求证:
平面ACE;
Ⅱ
若
,求
的最小值.
【答案】(Ⅰ)见解析; (Ⅱ)
.
【解析】
(Ⅰ)推导出BC⊥AC,AE⊥BC,由此能证明BC⊥平面ACE;
(Ⅱ)过点C作AE的平行线CD,则CD⊥平面ABC,以C为原点,CA为x轴,CB为y轴,作平面ABC的垂线为z轴,建立空间直角坐标系,利用向量法能求出sinβ的最小值.
Ⅰ
,
,
平面ABC,
,
,
平面ACE.
解:
Ⅱ
过点C作AE的平行线CD,则
平面ABC,
如图所示,以C为原点,CA为x轴,CB为y轴,作平面ABC的垂线为z轴,建立空间直角坐标系,
0,
,
0,
,
2,
,
0,
,设
y,
,
则
2,
,
0,
,
y,
,
设平面BCE的一个法向量
y,
,
则
,取
,得
0,
,
,
,
整理,得
,解得
,
,
,
,
,
当
,
时,
取到最小值,且最小值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某船舶制造厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产船舶
艘,其总成本为
(千万元),其中固定成本为2.8千万元,并且每生产1艘的生产成本为1千万元(总成本=固定成本+生产成本).销售收入
(千万元)满足:
,假定该船舶制造厂产销平衡(即生产的船舶都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数
的解析式(利润=销售收入-总成本);
(2)该厂生产多少艘船舶时,可使盈利最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
:
,
:
,则下面结论正确的是( )
A. 把
上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线![]()
B. 把
上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线![]()
C. 把
上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线![]()
D. 把
上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个
单位长度,得到曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABCA1B1C1中,AB AC,点E,F分别在棱BB1,CC1上(均异于端点),且∠ABE∠ACF,AE⊥BB1,AF⊥CC1.
求证:(1)平面AEF⊥平面BB1C1C;
(2)BC //平面AEF.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x0,x0+
是函数f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的两个相邻的零点
(1)求
的值;
(2)若对任意
,都有f(x)﹣m≤0,求实数m的取值范围.
(3)若关于
的方程
在
上有两个不同的解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|
)在某一个周期内的图象时,列表并填入了部分数据,如表:
![]()
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(
,0),求θ的最小值.
(3)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校高中男生中随机选取100名学生,将他们的体重(单位:
)数据绘制成频率分布直方图,如图所示.
![]()
(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在
,
内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在
内的人数为
,求其分布列和数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com