精英家教网 > 高中数学 > 题目详情
11.与圆C:x2+y2-2x-35=0关于直线y=-x对称的圆的方程为(  )
A.(x-1)2+y2=36B.(x+1)2+y2=36C.x2+(y+1)2=36D.x2+(y-1)2=36

分析 求出已知圆的圆心坐标与半径,然后求出对称圆的圆心与半径,即可求出对称圆的方程.

解答 解:圆C:x2+y2-2x-35=0的圆心坐标为(1,0),半径为6,
圆圆C:x2+y2-2x-35=0关于直线y=-x对称的圆的圆心坐标(0,-1),
所以圆圆C:x2+y2-2x-35=0关于直线y=-x对称的圆的方程为x2+(y+1)2=36.
故选C.

点评 本题考查关于点、直线对称的圆的方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知f(x)=sinx+cos$\frac{π}{4}$,则$f'(\frac{π}{4})$=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x|x-a|+2x,其中a∈R.
(1)若函数f(x)在R上是增函数,求a的取值范围.
(2)若存在a∈[-2,4],使得关于x的方程f(x)=bf(a)有三个不相同的实数解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知水平放置的△A BC是按“斜二测画法”得到如图所示的直观图,其中 B'O'=C'O'=1,${A}'{O}'=\frac{{\sqrt{3}}}{2}$,那么对于原△ABC则有(  )
A.AB=BCB.AB=BC,且AB⊥BCC.AB⊥BCD.AB=AC,且AB⊥AC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将两个数a=2014,b=2015交换使得a=2015,b=2014下列语句正确的一组是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是cm.已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制做的瓶子的最大半径为6cm.
问题:瓶子半径多大时,能使每瓶饮料的利润最大?瓶子半径多大时,每瓶饮料的利润最小?$({V_球}=\frac{4}{3}π{r^3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>0,函数f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,x∈R,若在区间$(0,\frac{1}{2}]$上至少存在一个实数x0,使f(x0)>g(x0)成立,则a的取值范围是(-3+$\sqrt{17}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某长方体截去一个三棱锥后,形成的几何体的平面展开图如图1所示.
(1)请在图2上补画出该几何体的直观图,并说明它是几面体;
(2)求该几何体的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙 两人独立地破译一个密码,他们能译出密码的概率分别为$\frac{1}{3}和\frac{1}{4}$,求:
(Ⅰ) 两个人都能译出密码的概率;
(Ⅱ) 恰有一个人译出密码的概率;
(Ⅲ) 至多有一个人译出密码的概率.

查看答案和解析>>

同步练习册答案