精英家教网 > 高中数学 > 题目详情
精英家教网选修4-1:几何证明选讲
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.
(I)试判断直线AB与⊙O的位置关系,并加以证明;
(Ⅱ)若tanE=
12
,⊙O的半径为3,求OA的长.
分析:(I)连接OC,由已知的OA与OB相等,CA与CB相等,OC为公共边,得到三角形AOC与三角形BOC全等,进而得到∠OAC与∠OCB相等,都为90°,即OC与AB垂直,故AB与圆O相切;
(II) 在直角三角形ACD中,根据直径所对的圆周角等于90°,得到三角形ECD为直角三角形,根据三角函数定义表示出tanE,即可得到CD与EC的比值,根据∠B为公共角,圆的弦切角等于所夹弧所对的圆周角,得到一对角相等,根据两对角相等的两三角形相似,由相似得出比例式,且相似比等于所求的比,设出BD=x,BC=2x,又根据相似得比例表示出BC的平方,把设出的BD和BC代入即可列出关于x的方程,求出方程的解即可得到x的值,即为BD的长,由OA=OB=OD+DB即可求出OA的长.
解答:精英家教网
解:(I)证明:如图,连接OC.
∵OA=OB,CA=CB,OC=OC,
∴△AOC≌△BOC,
∴∠OCA=∠OCB=90°,
∴OC⊥AB.
∴AB是圆O的切线;(3分)
(II)由ED为圆O的直径,得到∠ECD=90°,
在直角三角形中,
根据三角函数定义得:tanE=
CD
EC
=
1
2

∵∠B=∠B,∠BCD=∠E,
∴△BCD∽△BEC,
BD
BC
=
CD
EC
=
1
2

设BD=x,则BC=2x.(6分)又BC2=BD•BE,
∴(2x)2=x(x+6).(8分)
解得x1=0,x2=2.
由BD=x>0,∴BD=2.
∴OA=OB=BD+OD=2+3=5.(12分)
点评:此题考查了直线与圆的位置关系,以及相似三角形的判定与性质.其中证明切线的方法有两种:1、有点连接此点与圆心,证明夹角为直角;2、无点作垂线,证明垂线段等于圆的半径.要求学生掌握圆的一些性质,利用方程的思想解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案