精英家教网 > 高中数学 > 题目详情

已知函数= 是自然对数的底)
(1)若函数是(1,+∞)上的增函数,求的取值范围;
(2)若对任意的>0,都有,求满足条件的最大整数的值;
(3)证明:

解:(1)的取值范围为; 
(2)以整数k的最大值为2.
(3)略

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若当的表达式;
(2)求实数上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数上是增函数,在上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围;
(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,
求实数的取值范围;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)已知函数为实常数).
(I)当时,求函数上的最小值;
(Ⅱ)若方程在区间上有解,求实数的取值范围;
(Ⅲ)证明:
(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)若,求的单调区间;
(Ⅱ)在(Ⅰ)的条件下,对,都有,求实数的取值范围;
(Ⅲ)若上单调递增,在上单调递减,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
(Ⅰ)求的最小值;
(Ⅱ)若上为单调增函数,求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算由曲线,直线围成图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)
已知函数函数的图象与的图象关于直线对称,
(Ⅰ)当时,若对均有成立,求实数的取值范围;
(Ⅱ)设的图象与的图象和的图象均相切,切点分别为,其中
(1)求证:
(2)若当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案