分析 由已知及正弦定理可得sinA=$\frac{asinC}{c}$=$\frac{1}{2}$,又结合大边对大角可得A为锐角,从而可求A,进而利用三角形内角和定理可求B,利用三角形面积公式即可得解.
解答 解:△ABC中,∵a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,
∴由正弦定理可得:sinA=$\frac{asinC}{c}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
又∵a<c,A为锐角.
∴A=$\frac{π}{6}$,B=π-A-C=$\frac{π}{6}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{2}×\sqrt{6}×$$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题主要考查了正弦定理,大边对大角,三角形内角和定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{b^2}{a^2}$ | B. | -$\frac{b^2}{a^2}$ | ||
| C. | -$\frac{c^2}{a^2}$ | D. | 不确定,随A,B的变化而变化 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{3}$,$\frac{1}{3}$] | B. | [-$\frac{1}{2}$,$\frac{1}{2}$] | C. | [-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$] | D. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1 | B. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1 | C. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com