精英家教网 > 高中数学 > 题目详情
已知等差数列=( )
A.
B.
C.
D.
【答案】分析:根据等差数列的性质S4,S8-S4,S12-S8,S16-S12也成等差数列,结合,我们易根据等差数列的性质得到S8=3S4,S16=10S4,代入即可得到答案.
解答:解:根据等差数列的性质,
若数列{an}为等差数列,则S4,S8-S4,S12-S8,S16-S12也成等差数列;
又∵,则数列是以S4为首项,以S4为公差的等差数列
则S8=3S4,S16=10S4
=
故选D
点评:本题考查的知识点是等差数列的性质,其中根据数列{an}为等差数列,则S4,S8-S4,S12-S8,S16-S12也成等差数列,然后根据等差数列的性质,判断数列S8,S16与S4的关系,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a3=5,S6=36.
(1)求数列{an}的通项公式;
(2)设bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=9,a2+a6=14.
(1)求{an}的通项公式;
(2)若bn=
1anan+1
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,有
a11a10
+1<0,且该数列的前n项和Sn有最大值,则使得Sn>0 成立的n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且a2=2,S11=66
(1)求{an}的通项公式;
(2)设bn=(
14
)an
.求证:{bn}是等比数列,并求其前n项和Tn

查看答案和解析>>

同步练习册答案