精英家教网 > 高中数学 > 题目详情
12.函数f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,则f′(x)的大致图象是(  )
A.B.
C.D.

分析 求出函数的导数,利用导函数的解析式,利用特殊值判断函数的图象即可.

解答 解:函数f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,则f′(x)=x+cosx,当x=-$\frac{π}{2}$时,f′(-$\frac{π}{2}$)=-$\frac{π}{2}$,排除C.
当x=$\frac{π}{2}$时,f′($\frac{π}{2}$)=$\frac{π}{2}$,排除选项D,
x=0时,f′(0)=1,排除A,
故选:B.

点评 本题考查函数的导数,函数的图象的判断,函数经过的特殊点是解题常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数;并计算频率分布直方图中[80,90)间的矩形的高;
(3)求该班女生数学测试成绩的众数、中位数和平均数的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图中的三角形都是直角三角形.如图所示.则该几何体中直角三角形的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{8}$C.$\frac{9}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π),OP所经过的在正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论,其中正确的是(  )
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$
②函数f(x)在($\frac{π}{2}$,π)上为减函数
③任意x∈[0,$\frac{π}{2}$],都有f(x)+f(π-x)=4.
A.B.C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知离心率是$\sqrt{5}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,则该双曲线的标准方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设全集U={1,2,3,4},集合A={x|x2-5x+4<0,x∈Z},则∁UA={1,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆E的中心为原点O,焦点在x轴上,E上的点与E的两个焦点构成的三角形面积的最大值为12,直线4x+5y+12=0交椭圆于E于M,N两点.设P为线段MN的中点,若直线OP的斜率等于$\frac{4}{5}$,则椭圆E的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:
试销单价x(元)456789
产品销量y(件)q8483807568
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值$|\widehat{y_i}-{y_i}|≤1$时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中$\widehatb$,$\widehata$的最小二乘估计分别为$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

同步练习册答案