精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax2-2(a-1)x-3.
(1)若函数f(x)的单调递增区间是(-1,+∞),求实数a的取值集合;
(2)若函数f(x)在区间(0,1)上不是单调函数,求实数a的取值范围;
(3)若函数f(x)的定义域为[0,2],且f(x)在x=2时取得最大值,求实数a的取值范围.

分析 (1)若函数f(x)的单调递增区间是(-1,+∞),故函数f(x)的图象是开口朝上,且以直线x=-1为对称轴的抛物线,解得a值;
(2)若函数f(x)在区间(0,1)上不是单调函数,则0<$\frac{a-1}{a}$<1,解得实数a的取值范围;
(3)当a=0时,f(x)=2x-3在R上为增函数,满足条件;
当a<0时,若函数f(x)的定义域为[0,2],且f(x)在x=2时取得最大值,则$\frac{a-1}{a}$≥2,
当a>0时,若函数f(x)的定义域为[0,2],且f(x)在x=2时取得最大值,则$\frac{a-1}{a}$≤1,
综合满足条件的a的范围,可得答案.

解答 解:(1)∵函数f(x)=ax2-2(a-1)x-3,
若函数f(x)的单调递增区间是(-1,+∞),
故函数f(x)的图象是开口朝上,且以直线x=-1为对称轴的抛物线,
故$\left\{\begin{array}{l}a>0\\-1=\frac{a-1}{a}\end{array}\right.$,
解得:a=$\frac{1}{2}$;
(2)若函数f(x)在区间(0,1)上不是单调函数,
则0<$\frac{a-1}{a}$<1,
解得:a>1;
(3)当a=0时,f(x)=2x-3在R上为增函数,满足条件;
当a<0时,若函数f(x)的定义域为[0,2],且f(x)在x=2时取得最大值,则$\frac{a-1}{a}$≥2,解得:-1≤a<0,
当a>0时,若函数f(x)的定义域为[0,2],且f(x)在x=2时取得最大值,则$\frac{a-1}{a}$≤1,解得:a>0,
综上所述,a≥-1

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题中为真命题的是(  )
A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题
C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>x,则x>1”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a>0,b>0,且2a+b=2,则ab的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数y=f(x)=$\frac{a•{2}^{x}-1-a}{{2}^{x}-1}$为奇函数.
(1)确定a的值;
(2)求函数的定义域;
(3)求函数的值域;
(4)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设2${\;}^{{x}^{2-1}}$=8,则x=(  )
A.2B.-2C.-2或2D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图:阴影部分是一个机械构件.该构件是由一块半圆形铁皮剪切后,剩下了弓形面CMD,及三角形ABC所形成的.其中半圆直径AB=8,CD∥AB,点M是$\widehat{CD}$上一点,∠CBD=θ.
(1)求弓形面CMD的面积与θ的函数解析式k(θ);
(2)求这个构件的面积关于θ的函数解析式S(θ);并求S(θ)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:an(2+sin$\frac{n}{2}$π)=n(2+cosnπ),S4n=an2+bn,则a+2b=$\frac{133}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}•\overrightarrow{b}$=2$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$所成的角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲船在湖中B岛的正南A处,AB=3km,甲船以8km/h的速度向正北方向航行,同时乙船自B岛出发,以12km/h的速度向北偏东60°方向驶去,则行驶15分钟时,两船的距离是(  )
A.$\sqrt{7}\;km$B.$\sqrt{13}\;km$C.$\sqrt{19}\;km$D.$\sqrt{10-3\sqrt{3}}\;km$

查看答案和解析>>

同步练习册答案