精英家教网 > 高中数学 > 题目详情
3.如图所示,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,且PA⊥AB,PD⊥CD.
(1)判断CD是否和平面PAD垂直;
(2)证明:面PAD⊥面ABCD.

分析 (1)运用线面垂直的判定定理,结合平行线的性质,即可得到结论;
(2)由线面垂直的性质和判定,可得PA⊥平面ABCD,再由面面垂直的判定定理,即可得证.

解答 解:(1)CD和平面PAD垂直.
理由:由∠BCD=90°,AD∥BC,可得CD⊥AD,
又CD⊥PD,且AD∩PD=D,可得CD⊥平面PAD;
(2)证明:由(1)可得CD⊥平面PAD,
即有CD⊥PA,又PA⊥AB,
且AB,CD为相交二直线,
即有PA⊥平面ABCD,
又PA?平面PAD,可得面PAD⊥面ABCD.

点评 本题考查线面垂直和慢慢成长的判定,注意运用线面垂直和面面垂直的判定定理,考查转化思想和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示,若干个斜边长为2的等腰直角三角形的斜边在x轴上,横坐标为x的直线l自y轴开始向右匀速移动,设所有的三角形被直线l掠过的阴影部分的面积为f(x),则在定义域[0,+∞)内,关于函数f(x)的判断正确的是(  )
A.f(x)是周期函数B.f(x)-2=f(x+1)C.f(x+2)-1=f(x)D.f(x)-1=f(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y∈R,i为虚数单位,且$\frac{x}{1+i}$+$\frac{y}{1+2i}$=$\frac{5}{1+3i}$,则x+y=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=2x与函数y=f(x)的图象关于直线y=x对称,则不等式f(-1-$\frac{2}{x}$)≤0的解集为(  )
A.(-2,-1]B.[-2,-1]C.(-∞,-1]∪[0,+∞)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)是R上的奇函数且f(x+2)=-$\frac{1}{f(x)}$,当x∈(0,1)时,f(x)=2x,求f(-$\frac{9}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(1-x+x2)(2-3x)6=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8,则a3=693.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=3cos(2x-$\frac{π}{4}$)在[0,$\frac{π}{2}$]上的最大值为M,最小值为m,则M+m等于=3-$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等腰直角三角形斜边所在直线的方程是3x-y=0,一条直角边所在直线l的斜率为$\frac{1}{2}$,且经过点(4,-2),且此三角形的面积为10,求此直角三角形的直角顶点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.四棱锥P-ABCD的五个顶点都在一个球面上,底面ABCD是矩形,其中AB=3,BC=4,又PA⊥平面ABCD,PA=5,则该球的表面积为50π.

查看答案和解析>>

同步练习册答案