精英家教网 > 高中数学 > 题目详情
13.如图所示,若干个斜边长为2的等腰直角三角形的斜边在x轴上,横坐标为x的直线l自y轴开始向右匀速移动,设所有的三角形被直线l掠过的阴影部分的面积为f(x),则在定义域[0,+∞)内,关于函数f(x)的判断正确的是(  )
A.f(x)是周期函数B.f(x)-2=f(x+1)C.f(x+2)-1=f(x)D.f(x)-1=f(x+2)

分析 由题意可得,所有的三角形被直线l掠过的阴影部分的面积为f(x)在定义域[0,+∞)内单调递增,当x每增加2个单位,面积f(x)增加一个单位,由此可得结论.

解答 解:所有的三角形被直线l掠过的阴影部分的面积为f(x)在定义域[0,+∞)内单调递增,故排除A;
由于当x每增加2个单位,面积f(x)增加一个单位,故B、D不正确,C正确,
故选:C.

点评 本题主要考查函数的图象特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.$\frac{4+3i}{2-i}$=(  )
A.1-2iB.1+2iC.$\frac{5}{3}$-$\frac{10}{3}$iD.$\frac{5}{3}$+$\frac{10}{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某同学通过选拔考试进入学校的“体育队”和“文艺队”,进入这两个队成功与否是相互独立的,能同时进入这两个队的概率是$\frac{1}{24}$,至少能进入一个队的概率是$\frac{3}{8}$,并且能进入“体育队”的概率小于能进入“文艺队”的概率.
(Ⅰ)求该同学通过选拔进入“体育队”的概率p1和进入“文艺队”的概率p2
(Ⅱ)学校对于进入“体育队”的同学增加2个选修课学分,对于进入“文艺队”的同学增加1个选修课学分,求该同学获得选修课加分分数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|y=$\sqrt{{-x}^{2}-x}$,集合B={y|y=($\frac{1}{2}$)x,x∈A},则(∁UA)∩B等于(  )
A.[-1,0]B.(-1,0)C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知菱形ABCD,∠BAD=120°,AB=2,E为边BC的中点,则$\overrightarrow{AC}$•$\overrightarrow{AE}$等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,($\frac{1}{4}$a-sinC)cosB=sinBcosC,b=4$\sqrt{3}$.
(1)求角B的大小;
(2)D为BC边上一点,若AD=2,S△DAC=2$\sqrt{3}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点O为坐标原点,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-2,1),则$\overrightarrow{OA}$•$\overrightarrow{AB}$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正方形ABCD的边长为2,E为线段CD(含端点)上一动点,则$\overrightarrow{AE}$•$\overrightarrow{BD}$的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,且PA⊥AB,PD⊥CD.
(1)判断CD是否和平面PAD垂直;
(2)证明:面PAD⊥面ABCD.

查看答案和解析>>

同步练习册答案