精英家教网 > 高中数学 > 题目详情
4.某同学通过选拔考试进入学校的“体育队”和“文艺队”,进入这两个队成功与否是相互独立的,能同时进入这两个队的概率是$\frac{1}{24}$,至少能进入一个队的概率是$\frac{3}{8}$,并且能进入“体育队”的概率小于能进入“文艺队”的概率.
(Ⅰ)求该同学通过选拔进入“体育队”的概率p1和进入“文艺队”的概率p2
(Ⅱ)学校对于进入“体育队”的同学增加2个选修课学分,对于进入“文艺队”的同学增加1个选修课学分,求该同学获得选修课加分分数X的分布列与数学期望.

分析 (Ⅰ)由已知条件利用概率加法公式和相互独立事件概率乘法公式列出方程组,能求出该同学通过选拔进入“体育队”的概率p1和进入“文艺队”的概率p2
(Ⅱ)依题意随机变量X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(Ⅰ)∵某同学通过选拔考试进入学校的“体育队”和“文艺队”,
进入这两个队成功与否是相互独立的,能同时进入这两个队的概率是$\frac{1}{24}$,至少能进入一个队的概率是$\frac{3}{8}$,
并且能进入“体育队”的概率小于能进入“文艺队”的概率.
该同学通过选拔进入“体育队”的概率p1和进入“文艺队”的概率p2
∴$\left\{\begin{array}{l}{{p}_{1}{p}_{2}=\frac{1}{24}}\\{{p}_{1}+{p}_{2}-{p}_{1}{p}_{2}=\frac{3}{8}}\\{{p}_{1}<{p}_{2}}\end{array}\right.$,
解得${p}_{1}=\frac{1}{6},{p}_{2}=\frac{1}{4}$.
(Ⅱ)依题意随机变量X的可能取值为0,1,2,3,
P(X=0)=(1-$\frac{1}{6}$)(1-$\frac{1}{4}$)=$\frac{5}{8}$,
P(X=1)=(1-$\frac{1}{6}$)×$\frac{1}{4}$=$\frac{5}{24}$,
P(X=2)=$\frac{1}{6}×(1-\frac{1}{4})$=$\frac{1}{8}$,
P(X=3)=$\frac{1}{6}×\frac{1}{4}$=$\frac{1}{24}$,
∴X的分布列:

 X 0 1 2 3
 P $\frac{5}{8}$ $\frac{5}{24}$ $\frac{1}{8}$ $\frac{1}{24}$
E(X)=$0×\frac{5}{8}+1×\frac{5}{24}+2×\frac{1}{8}+3×\frac{1}{24}$=$\frac{7}{12}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意概率加法公式和相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN=BC=4,PA=4$\sqrt{3}$,则异面直线PA与MN所成角的大小是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的内角A,B,C的对边分别为a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠$\frac{π}{2}$.
(1)求c;
(2)若C=$\frac{2π}{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左、右、上顶点,点P是椭圆E上不同于A,B,C的一动点,若椭圆E的长轴长为4,且直线CA,CB的斜率满足kCA•kCB=-$\frac{1}{4}$.
(1)求椭圆E的方程;
(2)直线AC与PB交于点M,直线CP交x轴与点N,
①当点M在以AB为直径的圆上时,求点P的横坐标;
②试问:$\frac{1}{{k}_{MN}}$-$\frac{1}{{k}_{CP}}$(kMN,kCP表示直线MN,CP的斜率)是否为定值?若是,求出该定值;若不是.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-6≤0}\\{x-1≥0}\end{array}\right.$,则$\frac{y}{x}$的取值范围是(  )
A.[2,5]B.(-∞,2]∪[5,+∞)C.(-∞,3]∪[5,+∞)D.[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z=$\frac{ai+1}{2-i}$(a∈R,i为虚数单位)是纯虚数,则a的值为(  )
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=3,若直线AB的斜率为3,则线段AB的中点P的坐标为(1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,若干个斜边长为2的等腰直角三角形的斜边在x轴上,横坐标为x的直线l自y轴开始向右匀速移动,设所有的三角形被直线l掠过的阴影部分的面积为f(x),则在定义域[0,+∞)内,关于函数f(x)的判断正确的是(  )
A.f(x)是周期函数B.f(x)-2=f(x+1)C.f(x+2)-1=f(x)D.f(x)-1=f(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y∈R,i为虚数单位,且$\frac{x}{1+i}$+$\frac{y}{1+2i}$=$\frac{5}{1+3i}$,则x+y=4.

查看答案和解析>>

同步练习册答案