分析 (1)设出A,B,C的坐标,运用直线的斜率公式,可得a=2b,由题意可得a=2,求得b=1,进而得到椭圆方程;
(2)①求得A,B,C的坐标,可得直线AC的斜率,由点M在以AB为直径的圆上,可得AM⊥BM,
可得kAC•kBP=-1,即kBP=-2,设P(x0,y0),由题意方程和直线的斜率公式,解方程可得P的横坐标;
②求得直线CP的斜率,及方程,令y=0,可得N的坐标,再由直线AC,BP的方程可得M的坐标,运用两点的斜率公式,可得MN的斜率,化简整理即可得到定值2.
解答 解:(1)由题意可得A(-a,0),B(a,0),C(0,b),
则kCA•kCB=$\frac{b}{a}$•$\frac{b}{-a}$=-$\frac{1}{4}$,即为a=2b,
由题意可得a=2,则b=1,
即有椭圆E的方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)①由椭圆方程可得A(-2,0),B(2,0),C(0,1),
可得kAC=$\frac{1}{2}$,
由点M在以AB为直径的圆上,可得AM⊥BM,
可得kAC•kBP=-1,即kBP=-2,
设P(x0,y0),可得$\left\{\begin{array}{l}{{{x}_{0}}^{2}+4{{y}_{0}}^{2}=4}\\{\frac{{y}_{0}}{{x}_{0}-2}=-2}\end{array}\right.$,消去y0,可得17x02-64x0+60=0,
解得x0=$\frac{30}{17}$或x0=2.
点P是椭圆E上不同于B的点,可得x0=$\frac{30}{17}$;
②由上面可得kCP=$\frac{{y}_{0}-1}{{x}_{0}}$,即$\frac{1}{{k}_{CP}}$=$\frac{{x}_{0}}{{y}_{0}-1}$,
直线CP的方程为y=$\frac{{y}_{0}-1}{{x}_{0}}$x+1,令y=0,可得x=-$\frac{{x}_{0}}{{y}_{0}-1}$,即N(-$\frac{{x}_{0}}{{y}_{0}-1}$,0),
联立直线AC,BP的方程,可得$\left\{\begin{array}{l}{y=1+\frac{1}{2}x}\\{y=\frac{{y}_{0}}{{x}_{0}-2}(x-2)}\end{array}\right.$,
解得M($\frac{2(2{y}_{0}+{x}_{0}-2)}{2{y}_{0}-{x}_{0}+2}$,$\frac{4{y}_{0}}{2{y}_{0}-{x}_{0}+2}$),
则$\frac{1}{{k}_{MN}}$=$\frac{2(2{y}_{0}+{x}_{0}-2)({y}_{0}-1)+{x}_{0}(2{y}_{0}-{x}_{0}+2)}{4{y}_{0}({y}_{0}-1)}$
=$\frac{2{y}_{0}+{x}_{0}-2}{2{y}_{0}}$+$\frac{{x}_{0}}{{y}_{0}-1}$•$\frac{2{y}_{0}-{x}_{0}+2}{4{y}_{0}}$,
即有$\frac{1}{{k}_{MN}}$-$\frac{1}{{k}_{CP}}$=$\frac{2{y}_{0}+{x}_{0}-2}{2{y}_{0}}$+$\frac{{x}_{0}}{{y}_{0}-1}$•$\frac{2{y}_{0}-{x}_{0}+2}{4{y}_{0}}$-$\frac{{x}_{0}}{{y}_{0}-1}$
=$\frac{2{y}_{0}+{x}_{0}-2}{2{y}_{0}}$+$\frac{{x}_{0}}{{y}_{0}-1}$•$\frac{-2{y}_{0}-{x}_{0}+2}{4{y}_{0}}$=1+$\frac{{x}_{0}-2}{2{y}_{0}}$-$\frac{{x}_{0}}{4{y}_{0}}$(2+$\frac{{x}_{0}}{{y}_{0}-1}$)
=1-$\frac{1}{{y}_{0}}$-$\frac{{{x}_{0}}^{2}}{4{y}_{0}({y}_{0}-1)}$,
由$\frac{{{x}_{0}}^{2}}{4}$+y02=1,可得x02=4(1-y02),代入上式,可得
$\frac{1}{{k}_{MN}}$-$\frac{1}{{k}_{CP}}$=1-$\frac{1}{{y}_{0}}$-$\frac{4(1-{{y}_{0}}^{2})}{4{y}_{0}({y}_{0}-1)}$=1-$\frac{1}{{y}_{0}}$+$\frac{1+{y}_{0}}{{y}_{0}}$=2.
即$\frac{1}{{k}_{MN}}$-$\frac{1}{{k}_{CP}}$为定值2.
点评 本题考查椭圆方程的求法,注意运用直线的斜率公式,考查直径所对的圆周角为直角,运用直线的斜率之积为-1,考查直线的交点的求法,注意联立直线方程,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-2i | B. | 1+2i | C. | $\frac{5}{3}$-$\frac{10}{3}$i | D. | $\frac{5}{3}$+$\frac{10}{3}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | (-1,0) | C. | [1,2] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com