精英家教网 > 高中数学 > 题目详情
3.$\frac{4+3i}{2-i}$=(  )
A.1-2iB.1+2iC.$\frac{5}{3}$-$\frac{10}{3}$iD.$\frac{5}{3}$+$\frac{10}{3}$i

分析 利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{4+3i}{2-i}$=$\frac{(4+3i)(2+i)}{(2-i)(2+i)}=\frac{5+10i}{5}=1+2i$,
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,a,b,c分别是A,B,C的对边,若$\frac{a}{sinA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$,则△ABC是(  )
A.等边三角形B.锐角三角形C.任意三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN=BC=4,PA=4$\sqrt{3}$,则异面直线PA与MN所成角的大小是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A,B,C所对的边分别为a,b,c,sin2$\frac{A-B}{2}$+sinAsinB=$\frac{2+\sqrt{2}}{4}$.
(1)求角C的大小; 
(2)若b=4,△ABC的面积为6,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有5名男生和甲、乙2名女生排成一排,求下列情况各有多少种不同的排法?
(1)女生甲排在正中间;
(2)2名女生不相邻;
(3)女生甲必须排在女生乙的左边(不一定相邻);
(4)2名女生中间恰有1名男生.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC的面积为S,在边AB上任取一点P,则△PAC的面积大于$\frac{S}{3}$的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的内角A,B,C的对边分别为a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠$\frac{π}{2}$.
(1)求c;
(2)若C=$\frac{2π}{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左、右、上顶点,点P是椭圆E上不同于A,B,C的一动点,若椭圆E的长轴长为4,且直线CA,CB的斜率满足kCA•kCB=-$\frac{1}{4}$.
(1)求椭圆E的方程;
(2)直线AC与PB交于点M,直线CP交x轴与点N,
①当点M在以AB为直径的圆上时,求点P的横坐标;
②试问:$\frac{1}{{k}_{MN}}$-$\frac{1}{{k}_{CP}}$(kMN,kCP表示直线MN,CP的斜率)是否为定值?若是,求出该定值;若不是.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,若干个斜边长为2的等腰直角三角形的斜边在x轴上,横坐标为x的直线l自y轴开始向右匀速移动,设所有的三角形被直线l掠过的阴影部分的面积为f(x),则在定义域[0,+∞)内,关于函数f(x)的判断正确的是(  )
A.f(x)是周期函数B.f(x)-2=f(x+1)C.f(x+2)-1=f(x)D.f(x)-1=f(x+2)

查看答案和解析>>

同步练习册答案