分析 设A(x1,y1),B(x2,y2),代入抛物线的方程,求得抛物线的焦点和准线方程,运用抛物线的定义,以及中点坐标公式,结合直线的斜率公式,化简整理,即可得到所求中点P的坐标.
解答 解:设A(x1,y1),B(x2,y2),
可得y12=2x1,y22=2x2,
抛物线y2=2x的焦点为F($\frac{1}{2}$,0),准线为x=-$\frac{1}{2}$,
由抛物线的定义,可得|AF|=x1+$\frac{1}{2}$,|BF|=x2+$\frac{1}{2}$,
由AF|+|BF|=3,可得x1+x2+1=3,
即x1+x2=2,即$\frac{{x}_{1}+{x}_{2}}{2}$=1,
AB的中点的横坐标为1,
又kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{y}_{1}-{y}_{2}}{\frac{{{y}_{1}}^{2}}{2}-\frac{{{y}_{2}}^{2}}{2}}$=$\frac{2}{{y}_{1}+{y}_{2}}$=3,
即为y1+y2=$\frac{2}{3}$,则$\frac{{y}_{1}+{y}_{2}}{2}$=$\frac{1}{3}$.
则AB的中点坐标为(1,$\frac{1}{3}$).
故答案为:(1,$\frac{1}{3}$).
点评 本题考查线段中点的坐标,注意运用抛物线的定义、方程和性质,考查直线的斜率公式和中点坐标公式的运用,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | (-1,0) | C. | [1,2] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com