精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\sqrt{3}$sinxcosx+sin2x.
(1)求函数f(x)的最小正周期;
(2)当x∈(0,$\frac{π}{2}$)时,求函数f(x)的值域;
(3)当x∈[0,2π]时,求函数f(x)的单调增区间.

分析 (1)由题意,利用二倍角公式和辅助角公式将函数化简得到f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,由T=$\frac{2π}{ω}$得到最小正周期;
(2)求出2x-$\frac{π}{6}$的取值范围,利用函数单调性求出f(x)的值域;
(3)由$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$≤$\frac{π}{2}+2kπ$求出f(x)的单调增区间,再讨论k的值求出增区间并与[0,2π]求交集即可.

解答 解:(1)因为f(x)=$\sqrt{3}$sinxcosx+sin2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$(1-cos2x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
所以T=$\frac{2π}{ω}$=π;
(2)因为x∈(0,$\frac{π}{2}$),
所以2x-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
所以-$\frac{1}{2}$≤sin(2x-$\frac{π}{6}$)≤1,
所以0≤sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$≤$\frac{3}{2}$,
所以f(x)的值域为:[0,$\frac{3}{2}$];
(3)因为当$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$≤$\frac{π}{2}+2kπ$(k∈Z)即-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ(k∈Z)时,f(x)单调递增,
所以当k=0时,x∈[-$\frac{π}{6}$,$\frac{π}{3}$],
当k=1时,x∈[$\frac{5π}{6}$,$\frac{4π}{3}$],
当k=2时,x∈[$\frac{11π}{6}$,$\frac{7π}{3}$],
又因为x∈[0,2π],
所以增区间为:[0,$\frac{π}{3}$],[$\frac{5π}{6}$,$\frac{4π}{3}$],和[$\frac{11π}{6}$,2π].

点评 本题主要考察正弦型三角函数的值域和单调性的求法,主要考察学生整体思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如下结论中正确的是(  )
A.f(x)图象C关于直线x=$\frac{11}{12}$π对称
B.f(x)图象C关于点($\frac{2π}{3}$,0)对称
C.函数f(x)在区间($\frac{5π}{6}$,$\frac{4π}{3}$)内是增函数
D.把y=sin2x向右平移$\frac{π}{3}$个单位可以得到f(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,边长为a+b+1(a>0,b>0)的正方形被剖分为9个矩形,这些矩形的面积如图所示,则$\frac{{S}_{3}}{{S}_{2}+{S}_{4}}$+$\frac{2{S}_{5}}{{S}_{6}+{S}_{8}}$+$\frac{{S}_{7}}{{S}_{1}+{S}_{5}}$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN=BC=4,PA=4$\sqrt{3}$,则异面直线PA与MN所成角的大小是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有4本不同的书,其中语文书2本,数学2本,若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的放法有8种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A,B,C所对的边分别为a,b,c,sin2$\frac{A-B}{2}$+sinAsinB=$\frac{2+\sqrt{2}}{4}$.
(1)求角C的大小; 
(2)若b=4,△ABC的面积为6,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有5名男生和甲、乙2名女生排成一排,求下列情况各有多少种不同的排法?
(1)女生甲排在正中间;
(2)2名女生不相邻;
(3)女生甲必须排在女生乙的左边(不一定相邻);
(4)2名女生中间恰有1名男生.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的内角A,B,C的对边分别为a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠$\frac{π}{2}$.
(1)求c;
(2)若C=$\frac{2π}{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=3,若直线AB的斜率为3,则线段AB的中点P的坐标为(1,$\frac{1}{3}$).

查看答案和解析>>

同步练习册答案